The Role of Biochar in Improving Soil Quality and Rice Yields in Indonesia: A Narrative Review

Author's Information:

Aurelia Puspa Triana

Postgraduate Program of Soil Science, Faculty of Agriculture, Universitas Padjadjaran. Jalan  Raya Bandung  Sumedang  Km  21, Jatinangor, Sumedang 45363, Indonesia

Emma Trinurani Sofyan

Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran. Jalan Raya  Bandung  Sumedang Km  21, Jatinangor, Sumedang 45363, Indonesia

Rija Sudirja

Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran. Jalan Raya  Bandung  Sumedang Km  21, Jatinangor, Sumedang 45363, Indonesia

Vol 04 No 09 (2025):Volume 04 Issue 09 September 2025

Page No.: 537-542

Abstract:

Biochar is a carbon-rich material produced through the pyrolysis of organic biomass, offering promising benefits for improving soil quality and rice productivity in tropical regions. In Indonesian paddy fields, biochar has been shown to enhance soil structure, water retention, nutrient availability, and microbial activity. These improvements contribute to increased plant growth, grain yield, and nutrient use efficiency, especially when biochar is combined with chemical or organic fertilizers. Local agricultural residues provide sustainable feedstocks for biochar production. However, widespread adoption in Indonesia faces challenges, including limited access to pyrolysis technology, inconsistent product quality, and lack of national guidelines. This review emphasizes the need for integrated efforts across research, policy, and farmer training to optimize biochar application for sustainable rice farming in Indonesia.

KeyWords:

biochar, paddy soil, soil fertility

References:

  1. Antonangelo, JA, Sun, X. & Eufrade-Junior, HJ. 2025. Biochar Impact on Soil Health and Tree‑Based Crops: A Review. Biochar, 7(2), 205–218. https://doi.org/10.1007/s42773-025-00450-6
  2. Domingues, R. R., Sánchez-Monedero, M. A., Spokas, K. A., Melo, L. C. A., Trugilho, P. F., Valenciano, M. N., & Silva, C. A. 2020. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy10(6), 824. https://doi.org/10.3390/agronomy10060824
  3. Gamage, D. V., Mapa, R. B., Dharmakeerthi, R. S., & Biswas, A. 2016. Effect of rice-husk biochar on selected soil properties in tropical Alfisols. Soil Research, 54(3), 302-310.
  4. Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x
  5. Jatuwong, Kritsana, Worawoot Aiduang, Tanongkiat Kiatsiriroat, Wassana Kamopas, dan Saisamorn Lumyong. 2025. A Review of Biochar from Biomass and Its Interaction with Microbes. Life, 15(2), 284. https://doi.org/10.3390/life15020284
  6. Jin, F., Piao, J., Miao, S., Che, W., Li, X., Li, X., Shiraiwa, T., Tanaka, T., Taniyoshi, K., Hua, S., & Lan, Y. 2024. Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: based on a 6-year field experiment. Biochar, 6(1), 40. https://doi.org/10.1007/s42773-024-00332-3
  7. Jin, Q., Wang, W., Song, X., Sardans, J., Liu, X., Lin, S., Tariq, A., Zeng, F., & Peñuelas, J. 2023. Responses of soil–plant C, N, and P concentrations and stoichiometry to contrasting application rates of biochar to subtropical paddy field. Experimental Agriculture, 59, e15. https://doi.org/10.1017/S0014479723000108
  8. Kuryntseva, P., Karamova, K., Galitskaya, P., Selivanovskaya, S., & Evtugyn, G. 2023. Biochar functions in soil depending on feedstock and pyrolyzation properties with particular emphasis on biological properties. Agriculture13(10), 2003.
  9. Liu, Y., Li, H., Hu, T., Mahmoud, A., Li, J., Zhu, R., Jiao, X., & Jing, P. 2022. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. The Science of the total environment830, 154792. https://doi.org/10.1016/j.scitotenv.2022.154792
  10. Luo, P., Zhang, W., Xiao, D., Hu, J., Li, N., & Yang, J. 2025. Biochar-Based Fertilizers: Advancements, Applications, and Future Directions in Sustainable Agriculture—A Review. Agronomy, 15(5), 1104. https://doi.org/10.3390/agronomy15051104
  11. Lv, Y., Xu, L., Guo, X., Liu, J., Zou, B., Guo, Y., Zhang, Y., Li, H., Zheng, G., Guo, Y., & Zhao, M. 2022. Effect of Biochar on Soil Physiochemical Properties and Bacterial Diversity in Dry Direct-Seeded Rice Paddy Fields. Agronomy, 13(1), 4. https://doi.org/10.3390/agronomy13010004
  12. Maftuah, E., & Indrayati, L. (2014). The use of biochar for improve soil properties and growth of paddy in peatland. AGRIVITA Journal of Agricultural Science35(3), 290-295.
  13. Muhtar, J., & Nurida, N. L. 2021. Effects of residual biochar amendment on soi l chemical properties, nutrient uptake, crop yield and N2O emissions reduction i n acidic upland rice of East Lampung. In IOP Conf Ser Earth Environ Sci (Vol. 648, p. 012103).
  14. Muhtar, J., & Nurida, N. L. 2021. Effects of residual biochar amendment on soi l chemical properties, nutrient uptake, crop yield and N2O emissions reduction i n acidic upland rice of East Lampung. In IOP Conf Ser Earth Environ Sci (Vol. 648, p. 012103).
  15. Ning, C., Liu, R., Kuang, X., Chen, H., Tian, J., & Cai, K. 2022. Nitrogen Fertilizer Reduction Combined with Biochar Application Maintain the Yield and Nitrogen Supply of Rice but Improve the Nitrogen Use Efficiency. Agronomy12(12), 3039. https://doi.org/10.3390/agronomy12123039
  16. Qi, S., Degen, A., Wang, W., Huang, M., Li, D., Luo, B., Xu, J., Dang, Z., Guo, R., & Shang, Z. 2024. Systemic review for the use of biochar to mitigate soil degradation. GCB Bioenergy, 16(6). https://doi.org/10.1111/gcbb.13147
  17. Rahmat, A., Agustin, L., Indriyani, I., Alfakihuddin, M. L. B., Nurhayati, S., Kiswondo, S., & Mutolib, A. 2025. Characteristics of latosol soil after application of rice husk biochar in Bogor Regency, Indonesia. In BIO Web of Conferences (Vol. 155, p. 01018). EDP Sciences.
  18. Sarwani M, Nurida N and Agus F. 2013. Greenhouse emissions and land use issues related to the use of bioenergy in Indonesia Jurnal Penelitian dan Pengembangan Pertanian 32(2) 56-66.
  19. Shyam, S., Ahmed, S., Joshi, S.J. 2025. Biochar as a Soil amendment: implications for soil health, carbon sequestration, and climate resilience. Discov. Soil 2, 18. https://doi.org/10.1007/s44378-025-00041-8
  20. Soniari, N., Sutari, N., & Pradnyawathi, N. 2023. Pengaruh Jenis Biochar dan Kompos terhadap Aktivitas Mikroorganisme Tanah. Agrotrop : Journal On Agriculture Science, 13(3), 390-396. doi:10.24843/AJoAS.2023.v13.i03.p08
  21. Supriyadi, S., Widjajani, B. W., & Murniyanto, E. 2022. The Effect of Rice Husk Biochar and Cow Manure on Some Soil Characteristics, N and P Uptake and Plant Growth of Soybean in Alfisol. Journal of Tropical Soils27(2), 59-66.
  22. Syaifudin, A., Buchari, H., Prasetyo, D., & Lumbanraja, J. 2022. Pengaruh Perlakuan Pupuk Kandang dan Biochar terhadap Respirasi Tanah dan Produksi Jagung (Zea mays L.) di Tanah Ultisol. Journal of Tropical Upland Resources (J. Trop. Upland Res.)4(2), 56-68.
  23. Tomczyk, A., Sokołowska, Z. & Boguta, P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3.
  24. Wang, L., Luo, P., Jiang, C., Shen, J., Liu, F., Xiao, R., & Wu, J. 2023. Distinct effects of biochar addition on soil macropore characteristics at different depths in a double-rice paddy field. Science of The Total Environment, 857, 159368. https://doi.org/10.1016/j.scitotenv.2022.159368