Association Study of SNPs Markers to Traits Linked to Drought Stress Tolerance in Potato

Authors

  • Andrade-Díaz, Danita Universidad Nacional Abierta y a Distancia, Cl 14 #28-45, Pasto, Narino, Colombia

DOI:

https://doi.org/10.55677/ijlsar/V03I5Y2024-08

Keywords:

Genetic polymorphisms, Phenotypic traits, GWASpoly analysis, Population structure. Allelic interactions and Genotypic variation

Abstract

Potato (Solanum tuberosum L.) is the third most important food crop in the world and its production is constantly threatened by periods of drought. In this study, 115 potato genotypes were evaluated among 56 of the andigena group and 59 phureja to observe genetic variation in physiological traits that may be linked to drought tolerance. Eleven attributes were evaluated in genotypes tolerant and susceptible to drought stress. The genotypic variation of the materials was evaluated with a total of 968 SNP-type molecular markers, subjected to two soil moisture conditions. Association analysis was performed using the GWASpoly program to determine possible allelic interactions between genotypes with different ploidy levels. Analyses were corrected using population structure and parentage matrix as fixed cofactors. Significant SNPs were associated with phenotypic characteristics under contrasting water conditions for traits such as days to flowering, relative water content, tuber number and plant height. MYC-type transcription factors were associated with plant height, number of tubers per plant and plant water balance, demonstrating the multifunctionality of these regulatory proteins. While the HOS1 gene could be linked to the reduction of flowering time. These results will be the starting point for future studies for the validation of the markers, so that they can be used in potato drought stress breeding programs. 

References

Aksenova, N. P., Konstantinova, T. N., Golyanovskaya, S. A., Sergeeva, L. I., & Romanov, G. A. (2012). Hormonal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology, 59(4), 451–466. https://doi.org/10.1134/S1021443712040024

Aliche, E. B., Theeuwen, T. P. J. M., Oortwijn, M., Visser, R. G. F., & van der Linden, C. G. (2020). Carbon partitioning mechanisms in POTATO under drought stress. Plant Physiology and Biochemistry, 146, 211–219. https://doi.org/10.1016/j.plaphy.2019.11.019

Alter, S., Bader, K. C., Spannagl, M., Wang, Y., Bauer, E., Schön, C.-C., & Mayer, K. F. X. (2015). DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. Database, 2015. https://doi.org/10.1093/database/bav046

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Alvarez-Morezuelas, A., Barandalla, L., Ritter, E., & Ruiz de Galarreta, J. I. (2023). Genome-Wide Association Study of Agronomic and Physiological Traits Related to Drought Tolerance in Potato. Plants, 12(4), 734. https://doi.org/10.3390/plants12040734

Atchley, W. R., & Fitch, W. M. (1997). A natural classification of the basic helix–loop–helix class of transcription factors. Proceedings of the National Academy of Sciences, 94(10), 5172–5176. https://doi.org/10.1073/pnas.94.10.5172

Bayat, H., & Moghadam, A. N. (2019). Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum, 41(9), 149. https://doi.org/10.1007/s11738-019-2942-6

Begum, S., Jing, S., Yu, L., Sun, X., Wang, E., Abu Kawochar, M., Qin, J., Liu, J., & Song, B. (2022). Modulation of JA signalling reveals the influence of StJAZ1‐like on tuber initiation and tuber bulking in potato. The Plant Journal, 109(4), 952–964. https://doi.org/10.1111/tpj.15606

Boter, M., Ruíz-Rivero, O., Abdeen, A., & Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes & Development, 18(13), 1577–1591. https://doi.org/10.1101/gad.297704

Bredeson, J. V., Lyons, J. B., Oniyinde, I. O., Okereke, N. R., Kolade, O., Nnabue, I., Nwadili, C. O., Hřibová, E., Parker, M., Nwogha, J., Shu, S., Carlson, J., Kariba, R., Muthemba, S., Knop, K., Barton, G. J., Sherwood, A. V., Lopez-Montes, A., Asiedu, R., … Rokhsar, D. S. (2022). Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications, 13(1), 2001. https://doi.org/10.1038/s41467-022-29114-w

D’hoop, B. B., Keizer, P. L. C., Paulo, M. J., Visser, R. G. F., van Eeuwijk, F. A., & van Eck, H. J. (2014). Identification of agronomically important QTL in tetraploid potato cultivars using a marker–trait association analysis. Theoretical and Applied Genetics, 127(3), 731–748. https://doi.org/10.1007/s00122-013-2254-y

Deperi, F. (2019). Identificación de factores genéticos asociados a la resistencia a tizón tardío (Phytophthora infestans Mont. De Bary) en papa tetraploide, mediante el uso de mapeo asociativo con SNPs. Escuela de posgrados. Universidad Nacional del Mar de la Plata, Argentina.

Devaux, A., Goffart, J.-P., Kromann, P., Andrade-Piedra, J., Polar, V., & Hareau, G. (2021). The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems. Potato Research, 64(4), 681–720. https://doi.org/10.1007/s11540-021-09501-4

Ehrenreich, I. M., Hanzawa, Y., Chou, L., Roe, J. L., Kover, P. X., & Purugganan, M. D. (2009). Candidate Gene Association Mapping of Arabidopsis Flowering Time. Genetics, 183(1), 325–335. https://doi.org/10.1534/genetics.109.105189

Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012; 4:359.

Evanno G, Regnaut S, Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005; 14(8):2611±2620. doi: 10.1111/j.1365-294X.2005. 02553.x PMID: 15969739

Felcher, K. J., Coombs, J. J., Massa, A. N., Hansey, C. N., Hamilton, J. P., Veilleux, R. E., Buell, C. R., & Douches, D. S. (2012). Integration of Two Diploid Potato Linkage Maps with the Potato Genome Sequence. PLoS ONE, 7(4), e36347. https://doi.org/10.1371/journal.pone.0036347

Filiz, E., & Kurt, F. (2021). Expression and Co-expression Analyses of WRKY, MYB, bHLH and bZIP Transcription Factor Genes in Potato (Solanum tuberosum) Under Abiotic Stress Conditions: RNA-seq Data Analysis. Potato Research, 64(4), 721–741. https://doi.org/10.1007/s11540-021-09502-3

Gervais, T., Creelman, A., Li, X.-Q., Bizimungu, B., De Koeyer, D., & Dahal, K. (2021). Potato Response to Drought Stress: Physiological and Growth Basis. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.698060

Heang, D., & Sassa, H. (2012). Antagonistic Actions of HLH/bHLH Proteins Are Involved in Grain Length and Weight in Rice. PLoS ONE, 7(2), e31325. https://doi.org/10.1371/journal.pone.0031325

Hudson, K. A., & Hudson, M. E. (2015). A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean. International Journal of Genomics, 2015, 1–10. https://doi.org/10.1155/2015/603182

Karas, B., Amyot, L., Johansen, C., Sato, S., Tabata, S., Kawaguchi, M., & Szczyglowski, K. (2009). Conservation of Lotus and Arabidopsis Basic Helix-Loop-Helix Proteins Reveals New Players in Root Hair Development. Plant Physiology, 151(3), 1175–1185. https://doi.org/10.1104/pp.109.143867

Kebede, A., Kang, M. S., & Bekele, E. (2019). Advances in mechanisms of drought tolerance in crops, with emphasis on barley (pp. 265–314). https://doi.org/10.1016/bs.agron.2019.01.008

Koda, Y., Kikuta, Y., Tazaki, H., Tsujino, Y., Sakamura, S., & Yoshihara, T. (1991). Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry, 30(5), 1435–1438. https://doi.org/10.1016/0031-9422(91)84180-Z

Koizumi, E., Igarashi, T., Tsuyama, M., Ogawa, K., Asano, K., Kobayashi, A., Sanetomo, R., & Hosaka, K. (2021). Association of Genome-Wide SNP Markers with Resistance to Common Scab of Potato. American Journal of Potato Research, 98(2), 149–156. https://doi.org/10.1007/s12230-021-09827-2

Lazaro, A., Valverde, F., Piñeiro, M., & Jarillo, J. A. (2012). The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering. The Plant Cell, 24(3), 982–999. https://doi.org/10.1105/tpc.110.081885

Lee, J. H., Kim, J. J., Kim, S. H., Cho, H. J., Kim, J., & Ahn, J. H. (2012). The E3 Ubiquitin Ligase HOS1 Regulates Low Ambient Temperature-Responsive Flowering in Arabidopsis thaliana. Plant and Cell Physiology, 53(10), 1802–1814. https://doi.org/10.1093/pcp/pcs123

Linden, K. J., & Callis, J. (2020). The ubiquitin system affects agronomic plant traits. Journal of Biological Chemistry, 295(40), 13940–13955. https://doi.org/10.1074/jbc.REV120.011303

Lorenzo, O., Chico, J. M., Saénchez-Serrano, J. J., & Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis[W]. The Plant Cell, 16(7), 1938–1950. https://doi.org/10.1105/tpc.022319

Moskvina, V., & Schmidt, K. M. (2008). On multiple-testing correction in genome-wide association studies. Genetic Epidemiology, 32(6), 567–573. https://doi.org/10.1002/gepi.20331

Mosquera, T., Alvarez, M. F., Jiménez-Gómez, J. M., Muktar, M. S., Paulo, M. J., Steinemann, S., Li, J., Draffehn, A., Hofmann, A., Lübeck, J., Strahwald, J., Tacke, E., Hofferbert, H.-R., Walkemeier, B., & Gebhardt, C. (2016). Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLOS ONE, 11(6), e0156254. https://doi.org/10.1371/journal.pone.0156254

Ospina, N. C. A., Lammerts van Bueren, E. T., Allefs, S., Vos, P. G., van der Linden, G., Maliepaard, C. A., & Struik, P. C. (2021). Association Mapping of Physiological and Morphological Traits Related to Crop Development under Contrasting Nitrogen Inputs in a Diverse Set of Potato Cultivars. Plants, 10(8), 1727. https://doi.org/10.3390/plants10081727

Pan, R., Buitrago, S., Peng, Y., Fatouh Abou-Elwafa, S., Wan, K., Liu, Y., Wang, R., Yang, X., & Zhang, W. (2022). Genome-wide identification of cold-tolerance genes and functional analysis of IbbHLH116 gene in sweet potato. Gene, 837, 146690. https://doi.org/10.1016/j.gene.2022.146690

Pandey, J., Scheuring, D. C., Koym, J. W., & Vales, M. I. (2022). Genomic regions associated with tuber traits in tetraploid potatoes and identification of superior clones for breeding purposes. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.952263

Pervaiz, A., Sajid, Z. A., Yousaf, S., & Aftab, F. (2023). Microtuberization Potential of Jasmonic Acid, Kinetin and Putrescine in Potato (Solanum tuberosum L.). American Journal of Potato Research. https://doi.org/10.1007/s12230-023-09905-7

PGSC, T. P. G. S. C. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189–195. https://doi.org/10.1038/nature10158

Qu, S., Yang, D., Yu, H., Chen, F., Wang, K., Ding, W., Xu, W., & Wang, Y. (2022). QTL analysis of early flowering of female flowers in zucchini (Cucurbita pepo L.). Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2022.09.009

Ray, D., & Chatterjee, N. (2020). Effect of non-normality and low count variants on cross-phenotype association tests in GWAS. European Journal of Human Genetics, 28(3), 300–312. https://doi.org/10.1038/s41431-019-0514-2

Rosyara, U. R., De Jong, W. S., Douches, D. S., & Endelman, J. B. (2016). Software for Genome‐Wide Association Studies in Autopolyploids and Its Application to Potato. The Plant Genome, 9(2). https://doi.org/10.3835/plantgenome2015.08.0073

Saidi, A., & Hajibarat, Z. (2020). Application of Next Generation Sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress. Biocatalysis and Agricultural Biotechnology, 29, 101801. https://doi.org/10.1016/j.bcab.2020.101801

Sánchez, M. (2017). Estudio de la variabilidad genética en accesiones de papa (Solanum tuberosum L.) mediante marcadores SSRs. Ciencia y Agricultura, vol. 14, núm. 2, 2017, Julio-, pp. 67-76.

Tagliotti, M. E., Deperi, S. I., Bedogni, M. C., & Huarte, M. A. (2021). Genome‐wide association analysis of agronomical and physiological traits linked to drought tolerance in a diverse potatoes ( Solanum tuberosum ) panel. Plant Breeding, 140(4), 654–664. https://doi.org/10.1111/pbr.12938

Tiwari, J. K., Vanishree, G., Patil, V. U., Buckseth, T., Dutt, S., Dalamu, & Singh, R. K. (2022). Genomic Designing for Abiotic Stress Tolerant in Potato. In Genomic Designing for Abiotic Stress Resistant Vegetable Crops (pp. 49–75). Springer International Publishing. https://doi.org/10.1007/978-3-031-03964-5_2

Tiwari, Jagesh Kumar et al. CRISPR/Cas genome editing in potato: Current status and future perspectives. Frontiers in Genetics, v. 13, p. 82, 2022.

Tolessa, E. S. (2019). A review on water and nitrogen use efficiency of potato (Solanum tuberosum L.) in relation to its yield and yield components. Archives of Agriculture and Environmental Science, 4(2), 119–132. https://doi.org/https://doi.org/10.26832/24566632.2019.040201

Verhulst, B., & Neale, M. C. (2021). Best Practices for Binary and Ordinal Data Analyses. Behavior Genetics, 51(3), 204–214. https://doi.org/10.1007/s10519-020-10031-x

Wang, R., Zhao, P., Kong, N., Lu, R., Pei, Y., Huang, C., Ma, H., & Chen, Q. (2018). Genome-Wide Identification and Characterization of the Potato bHLH Transcription Factor Family. Genes, 9(1), 54. https://doi.org/10.3390/genes9010054

Wang, Y., Nishimura, M. T., Zhao, T., & Tang, D. (2011). ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. The Plant Journal, 68(1), 74–87. https://doi.org/10.1111/j.1365-313X.2011.04669.x

Waseem, M., Rong, X., & Li, Z. (2019). Dissecting the Role of a Basic Helix-Loop-Helix Transcription Factor, SlbHLH22, Under Salt and Drought Stresses in Transgenic Solanum lycopersicum L. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00734

Xu, J., Xu, H., Zhao, H., Liu, H., Xu, L., & Liang, Z. (2022). Genome-wide investigation of bHLH genes and expression analysis under salt and hormonal treatments in Andrographis paniculata. Industrial Crops and Products, 183, 114928. https://doi.org/10.1016/j.indcrop.2022.114928

Yang, P., Li, Y., He, C., Yan, J., Zhang, W., Li, X., Xiang, F., Zuo, Z., Li, X., Zhu, Y., Liu, X., & Zhao, X. (2020). Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. Journal of Proteomics, 214, 103621. https://doi.org/10.1016/j.jprot.2019.103621

Yeboah, A., Lu, J., Ting, Y., Karikari, B., Gu, S., Xie, Y., Liu, H., & Yin, X. (2021). Genome-wide association study identifies loci, beneficial alleles, and candidate genes for cadmium tolerance in castor (Ricinus communis L.). Industrial Crops and Products, 171, 113842. https://doi.org/10.1016/j.indcrop.2021.113842

Zuo, Z.-F., Lee, H.-Y., & Kang, H.-G. (2023). Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. International Journal of Molecular Sciences, 24(2), 1419. https://doi.org/10.3390/ijms24021419

Zuo, Z.-F., Sun, H.-J., Lee, H.-Y., & Kang, H.-G. (2021). Identification of bHLH genes through genome-wide association study and antisense expression of ZjbHLH076/ZjICE1 influence tolerance to low temperature and salinity in Zoysia japonica. Plant Science, 313, 111088. https://doi.org/10.1016/j.plantsci.2021.111088

Downloads

Published

2024-05-14

How to Cite

Danita, A.-D. . (2024). Association Study of SNPs Markers to Traits Linked to Drought Stress Tolerance in Potato. International Journal of Life Science and Agriculture Research , 3(5), 382–403. https://doi.org/10.55677/ijlsar/V03I5Y2024-08

Similar Articles

<< < 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.