Study of Microbiological Contamination in Babylonian Ruminant and Poultry Slaughter

Authors

  • Mohammed Khalil Ibrahim Al-Saeedi College of Environmental Sciences- Al-Qasim Green University- Iraq
  • Haitham Mohammed Hussein Agriculture college- Al-Qasim green university- Iraq
  • Hashim Hadi Al-Jebory Agriculture college- Al-Qasim green university- Iraq

DOI:

https://doi.org/10.55677/ijlsar/V03I11Y2024-08

Keywords:

microbiological, contamination, ruminant and poultry slaughter, harmful bacteria.

Abstract

Unsuitable sanitary conditions and mishandling are the main causes of environmental pollution in slaughter, Slaughter are a major source of bacterial contamination in poultry meat and its products, which is a major health and economic concern for many researchers. 18 samples were taken from six slaughterhouses in Babil Governorate (three samples from poultry slaughterhouses and three samples from ruminant slaughter, where sample numbers 1, 2 and 3 were divided into poultry slaughter and sample numbers 4, 5 and 6 were divided into ruminant slaughterhouses from the period from January 2024 to April 2024. Analyzing the microbial contamination in the slaughter of Babylonian poultry and ruminants. Media Transporter tubes containing peptone water were used to transport, collect and store samples from the slaughterhouses and transport them to the laboratory. The validity of the sample transporter is 24 hours. The results of the experiment showed the emergence of bacterial contamination of pathogenic bacteria Escherichia coli, E.coli bacteria, and bacteria Pseudomonas, Salmonella, and Shigela bacteria were found in all study samples from the above-mentioned sites, some of which were found in high numbers, indicating a lack of interest in cleanliness and sterilization of animal slaughter.

References

Abu-Ruwaida, A. S., Sawaya, W. N., Dashti, B. H., Murad, M., & Al-Othman, H. A. 1994. Microbiological quality of broilers during processing in a modern commercial slaughterhouse in Kuwait. Journal of Food Protection, 57(10). http://meridian.alle npress.com/jfp/article-pdf/57/10/887/1659225/0362-028x-57_10_887.

Adebowale, O.; Alonge, D.; Agbede, S.; Adeyemo, O. 2010. Bacteriological assessment of quality of water used at the Bodija municipal abattoir, Ibadan, Nigeria. Sahel J. Vet. Sci., 9, 63–67.

Aklilu A, Kahase D, Dessalegn M, et al. (2015) Prevalence of intestinal parasites, salmonella and shigella among apparently health food handlers of Addis Ababa University student’s cafeteria, Addis Ababa, Ethiopia. BMC Res Notes 8: 1–6.

Al-Jebory, H.H., B. A. M. Lehmood, M.K.I. Al-Saeedi, N.A.L. Ali. 2023. Influence of Neem Leaves Powder in Litter Contamination, and Welfare Indicators of Broiler (Ross 308) Exposed to Heat Stress. International Journal of Life Science and Agriculture Research. 02(12): 497-504. DOI: https://doi.org/10.55677/ijlsar/V02I12Y2023.

Allen, V. M., Hinton, M. H., Tinker, D. B., Gibson, C., Mead, G. C., & Wathes, C. M. 2003. Microbial cross-contamination by airborne dispersion and contagion during defeathering of poultry. British Poultry Science, 44(4), 567–576. https://doi.org/ 10.1080/00071660310001616183.

Althaus, D., Zweifel, C., & Stephan, R. 2017. Analysis of a poultry slaughter process: Influence of process stages on the microbiological contamination of broiler carcasses. Italian Journal of Food Safety, 6(4), 190–194. https://doi.org/10.4081/ ijfs. 7097.

Álvarez-Astorga, M., Capita, R., Alonso-Calleja, C., Moreno, B., Del, M. and Garcı́a-Fernández, C. (2002) Microbiological quality of retail chicken by-products in Spain. Meat Sci., 62(1): 45-50.

Ananchaipattana C, Hosotani Y, Kawasaki S, Pongsawat S, Md. Latiful B, Isobe S, 2012;. Prevalence of foodborne pathogens in retailed foods in Thailand. Foodborne pathogens and disease. 9(9): 835–40.

https://doi.org/10.1089/fpd.2012.1169 PMID: 22953752.

Anon. (2017). Commission regulation (EU) 2017/1495 of 23 August 2017 amending Regulation (EC) No 2073/2005 as regards Campylobacterinbroilercarcaseshttps://ec.europa.eu/food/sites/food/files/safety/docs/biosafety_food-borne-disea se_campy_cost-bene-analy.

Anon. Zoonosis. 2011.Availablefrom: http://en.wikipendia.org/wiki/zoonosis . Retrieved on 21-08-2022.

Antic, D.; Houf, K.; Michalopoulou, E.; Blagojevic, B. 2021. Beef abattoir interventions in a risk-based meat safety assurance system. Meat Sci., 182, 108622.

Antunes P, Mourão J, Campos J, Peixe L. 2016. Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection.; 22(2): 11021.https://doi.org/10.1016/j.cmi.2015.12.004PMID: 26708671.

Barco, L., Belluco, S., Roccato, A., & Ricci, A. 2017. Escherichia coli and Enterobacteriaceae counts on pig and ruminant carcasses along the slaughterline, factors influencing the counts and relationship between visual faecal contamination of carcasses and counts: A review. EFSA Supporting Publications, 11(8). https://doi. org/10.2903/sp.efsa..en-634.

Bensid, A. 2018 Hygiène et Inspection des Viandes Rouges; Dar Djelfa Info for Publishing and Distribution: Djelfa Province, Algeria.

Berrang, M. E., & Dickens, J. A. 2000. Presence and level of Campylobacter spp. on broiler carcasses throughout the processing plant. The Journal of Applied Poultry Research, 9(1), 43–47. https://doi.org/10.1093/japr/9.1.43.

Boysen, L., Nauta, M., & Rosenquist, H. (2016). Campylobacter spp. and Escherichia coli contamination of broiler carcasses across the slaughter line in Danish slaughterhouses. Microbial Risk Analysis, 2–3, 63–67. https://doi.org/10.1016/j. mran.2016.05.005.

Buess, S., Zurfluh, K., Stephan, R., & Guldimann, C. 2019. Quantitative microbiological slaughter process analysis in a large-scale Swiss poultry abattoir. Food Control, 105, 86–93. https://doi.org/10.1016/j.foodcont.05.012.

Buncic, S., Antic, D., & Blagojevic, B. (2017). Microbial ecology of poultry and poultry products. Quantitative Microbiology in Food Processing: Modeling the Microbial Ecology, 483–498.

Buzon-Duran, L., Alonso-Calleja, C., Riesco-Pelaez, F. and Capita, R. (2017) Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA bio¬films. Food Microbiol., 65 : 294-301.

Capita, R. and Alonso-Calleja, C. (2013) Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr., 53(1): 11-48.

Cegar, S., Kuruca, L., Vidovic, B., Antic, D., Hauge, S. J., Alvseike, O., & Blagojevic, B. (2022). Risk categorisation of poultry abattoirs on the basis of the current process hygiene criteria and indicator microorganisms. Food Control, 132(July 2021), Article108530.https://doi.org/10.1016/j.foodcont.2021.108530

Collobert, J.-F.; Dorey, F.; Dieuleveux, V.; Quillien, N. 2002. Qualité bactériologique de surface de carcasses de bovins. Sci. Des. Aliment., 22, 327–334.

Corry, J. E. L., James, S. J., Purnell, G., Barbedo-Pinto, C. S., Chochois, Y., Howell, M., & James, C. 2007. Surface pasteurisation of chicken carcasses using hot water. Journal of Food Engineering, 79(3), 913–919. https://doi.org/10.1016/j. jfoodeng.03.018.

Department of Disease Control. 2021. Food Poisoning Situation in Thailand. [cited 14 May]. Available: https://ddc.moph.go.th/brc/news.php?news=17033&deptcode=brc

Devleesschauwer, B.; Haagsma, J.A.; Mangen, M.-J.J.; Lake, R.J.; Havelaar, A.H. 2018; The global burden of foodborne disease. In Food Safety Economics: Incentives for a Safer Food Supply; Springer: Berlin/Heidelberg, Germany, pp. 107–122.

Djekic, I., & Tomasevic, I. 2016. Environmental impacts of the meat chain – current status and future perspectives. Trends in Food Science & Technology, 54, 94–102. https://doi.org/10.1016/j.tifs.2016.06.001.

EFSA Panel on Biological Hazards (BIOHAZ). 2010. Scientific Opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J., 8, 1437.

EFSA Panel on Biological Hazards (BIOHAZ); 2012. EFSA Panel on Contaminants in the Food Chain (CONTAM); EFSA Panel on Animal Health and Welfare (AHAW). Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry). EFSA J., 10, 2741.

EFSA/ECDC. (2021). EU one health 2020 zoonoses report. EFSA Journal,19(12),6971.

https://doi.org/10.2903/j.efsa.2021.6971.

Eisel, W.; Linton, R.; Muriana, P. A 2018. survey of microbial levels for incoming raw beef, environmental sources, and ground beef in a red meat processing plant. Food Microbiol., 14, 273–282.

Elmonir W, Abo-Remela E, Sobeih A (2018) Public health risks of Escherichia coli and Staphylococcus aureus in raw bovine milk sold in informal markets in Egypt. J Infect Dev Countries 12: 533–541.

Endale, B.G. and Hailay, G. (2013) Assessment of bacterio¬logical quality of meat contact surfaces in selected butcher shops of Mekelle city, Ethiopia. J. Environ. Occup. Sci., 2(2): 61-66.

García-Díez, J.; Saraiva, S.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.T.; Saraiva, C. 2023, The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Vet. Sci. 10, 167.

Ghareeb, K., Awad, W. A., Mohnl, M., Schatzmayr, G., & Bohm, ¨ J. (2013). Control strategies for Campylobacter infection in poultry production. World’s Poultry Science Journal, 69(1), 57–76. https://www.cambridge.org/core/journals/world-spoultryscience-journal/article/abs/control-strategies-for campylobacter-infection-in-poultr production/4714D344DED60CCA195298FF32DDF186.

Goncalves-Teno´ rio A, Silva BN, Rodrigues V, Cadavez V, Gonzales-Barron U. 2018; Prevalence of pathogens in poultry meat: a meta-analysis of European published surveys. Foods. 7(5): 69. https://doi.org/10.3390/foods7050069 PMID: 29751496

Gonzales-Barron, U.; Butler, F.2011. The use of meta-analytical tools in risk assessment for food safety. Food Microbiol. 28, 823–827.

Habib, I., Berkvens, D., de Zutter, L., Dierick, K., van Huffel, X., Speybroeck, N., Geeraerd, A. H., & Uyttendaele, M. (2012). Campylobacter contamination in broiler carcasses and correlation with slaughterhouses operational hygiene inspection. Food Microbiology,29(1),105–https://doi.org/10.1016/j.fm.2011.09.004.

Hauge, S.J.; Johannessen, G.S.; Haverkamp, T.H.; Bjørkøy, S.; Llarena, A.K.; Spilsberg, B.; Leithaug, M.; Økland, M.; Holthe, J.; Røtterud, O.-J. 2023, Assessment of poultry process hygiene and bacterial dynamics along two broiler slaughter lines in Norway. Food Control 146, 109526.

Hemalata V, Virupakshaiah D (2016). Isolation and identification of food borne pathogens from spoiled food samples. Int J Curr Microbiol Appl Sci 5: 1017–1025.

Heredia N, García S (2018). Animals as sources of food-borne pathogens: A review. Anim Nutr 4: 250–255.

Hoffmann S, Devleesschauwer B, Aspinall W, et al. (2017) Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation. PLoS One 12: e0183641.

ICMS. 1998. Poultry and poultry products. In Micro-organisms in foods: Microbial ecology of food commodities (pp. 75–129). Springer US. https://doi.org/10.1007/978-1- 4615-5307-6_2.

İnanç A, Mustafa A,S (2018) Antibiotic Resistance of Escherichia coli O157: H7 Isolated from Chicken Meats. KSÜ Doğa Bilimleri Dergisi 21: 7–12.

Johnson et al., 2011. “Antimicrobial Drug-Resistant Escherichia coli From Humans and Poultry Products, Minnesota and Wisconsin, 2002–2004”; A.R. Vieira et al., “Association Between Antimicrobial Resistance in Escherichia coli Isolates From Food Animals and Blood Stream Isolates From Humans in Europe: An Ecological Study,” Foodborne Pathogens and Disease 8.

Klaharn K, Pichpol D, Meeyam T, Harintharanon T, Lohaanukul P, Punyapornwithaya V (2022) Bacterial contamination of chicken meat in slaughterhouses and the associated risk factors: A nationwide study in Thailand. PLoS ONE 17(6): e0269416. https://doi.org/10.1371/journal.pone.0269416

Korkmaz, B.; Maaz, D.; Reich, F.; Gremse, C.; Haase, A.; Mateus-Vargas, R.H.; Mader, A.; Rottenberger, I.; Schafft, H.A.; Bandick, N. 2022. Cause and effect analysis between influencing factors related to environmental conditions, hunting and handling practices and the initial microbial load of game carcasses. Foods, 11, 3726.

Kumar, A. 2019, Food quality: Hygiene, contaminations and quality testing. J. Nutr. Food Sci. 2, 100008.

Loretz, M., Stephan, R., & Zweifel, C. 2010. Antimicrobial activity of decontamination treatments for poultry carcasses: A literaturesurvey. InFoodcontrol. https://doi.org/10.1016/j.foodcont.2009.11.007.

Lupo, C., le Bouquin, S., Balaine, L., Michel, V., P´eraste, J., Petetin, I., Colin, P., Jouffe, L., & Chauvin, C. (2013). Bayesian network as an aid for Food Chain Information use for meat inspection. Preventive Veterinary Medicine, 109(1), 25–36. https://doi.org/10.1016/j.prevetmed.2012.09.004.

Mataragas, M., Drosinos, E. H., Tsola, E., & Zoiopoulos, P. E. (2012). Integrating statistical process control to monitor and improve carcasses quality in a poultry slaughterhouse implementing a HACCP system. Food Control, 28(2), 205–211. https://doi.org/10.1016/j.foodcont.2012.05.032.

Nagel Gravning, G. E., Røtterud, O.-J., Bjørkøy, S., Forseth, M., Skjerve, E., Llarena, A.-K., Lian, A., Johannessen, G. S., & Hauge, S. J. 2021. Comparison of four sampling methods for microbiological quantification on broiler carcasses. Food Control,121, Article107589.https://doi.org/10.1016/j.foodcont.2020.107589.

Nastasijevi´c, I., Proscia, F., Boskovic, M., Glisic, M., Blagojevic, B., Sorgentone, S., Kirbis, A., & Ferri, M. (2020a). The European Union control strategy for Campylobacter spp., in the broiler meat chain. Journal of Food Safety, 40(5), Article e12819. https://doi.org/10.1111/jfs.12819.

Nastasijevic, I.; Boskovic, M.; Glisic, M. 2023. Abattoir hygiene. In Present Knowledge in Food Safety; Elsevier: Amsterdam, The Netherlands,; pp. 412–438.

Ovuru, K.F.; Izah, S.C.; Ogidi, O.I.; Imarhiagbe, O.; Ogwu, M.C. 2023 Slaughterhouse facilities in developing nations: Sanitation and hygiene practices, microbial contaminants and sustainable management system. Food Sci. Biotechnol., 1–19.

Oyarzabal, O. A., Hawk, C., Bilgili, S. F., Cayce Warf, C., & Kere Kemp, G. 2004. Effects of postchill application of acidified sodium chlorite to control Campylobacter spp. and Escherichia coli on commercial broiler carcasses. Journal of Food Protection, 67 (10). http://meridian.allenpress.com/jfp/article.

Pessoa, J., Rodrigues Da Costa, M., Nesbakken, T., & Meemken, D. 2021. Assessment of the effectiveness of pre-harvest meat safety interventions to control foodborne pathogens in broilers: A systematic review on behalf of the RIBMINS cost action. Current Clinical Microbiology Reports, 8, 21–30. https://doi.org/10.1007/s40588- 021-00161-z/Published

Pires, S.; de Knegt, L.; Hald, T. 2011. Estimation of the Relative Contribution of Different Food and Animal Sources to Human Salmonella Infections in the European Union; Question No EFSA-Q-2010-00685; EFSA Supporting Publications: Parma, Italy,

Projahn, M., Pacholewicz, E., Becker, E., Correia-Carreira, G., Bandick, N., & Kaesbohrer, A. 2018. Reviewing interventions against Enterobacteriaceae in broiler processing: Using old techniques for meeting the new challenges of ESBL E.coli.BioMedResearchInternational,https://doi.org/10.1155/2018/7309346.

Rai, B. K. (2016). Basic Practical Manual on Industrial Microbiology. Lulu. com.

Rasool, S.R.; Aljamali, N.M.; Al-Zuhairi, A.J. 2020, Guanine substituted heterocyclic derivatives as bioactive compounds. Biochem. Cell. Arch. 20, 3651–3655.

Rouger A, Tresse O, Zagorec M.2017، Bacterial contaminants of poultry meat: sources, species, and dynamics.Microorganisms. 5(3):50–63.

Seok, K. and Bohach, G.A. (2007) Staphylococcus aureus. In: Doyle, M.P. and Beuchat, R.L., editors. Food Microbiology: Fundamentals and Frontiers. 3rd ed. ASM Press, Washington DC. p493.

Shang K, Wei B, Jang H-K, Kang M. 2019; Phenotypic characteristics and genotypic correlation of antimicrobial resistant (AMR) Salmonella isolates from a poultry slaughterhouse and its downstream retail markets.Food Control. 100: 35–45.

Soro, A. B., Whyte, P., Bolton, D. J., & Tiwari, B. K. (2020). Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Comprehensive Reviews in Food Science and Food Safety, 19, 1353–1577. https://doi.org/10.1111/ 1541-4337.12544.

Sulieman, A.M.E.; Abu Zeid, I.M.; Haddad, A. 2023. Contamination of Halal Beef Carcasses by Bacteria Grow or Survive During Cold Storage. In Halal and Kosher Food: Integration of Quality and Safety for Global Market Trends; Springer: Berlin/Heidelberg, Germany,; pp. 201–214.

Swelum, A. A., Elbestawy, A. R., El-Saadony, M. T., Hussein, E. O., Alhotan, R., Suliman, G. M., ... & Abd El-Hack, M. E. (2021). Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: an updated overview. Poultry science, 100(5), 101039.

The Department of Livestock Development. 2008 Microbiological Standard for Livestock Products. [cited 15 May 2021]. Available: http://qcontrol.dld.go.th/index.php/2013-12-11-03-23-37/127-2013-12- 09-03-56-19.

Uzoigwe, N.E.; Nwufo, C.R.; Nwankwo, C.S.; Ibe, S.N.; Amadi, C.O.; Udujih, O.G. 2021. Assessment of bacterial contamination of beef in slaughterhouses in Owerri zone, Imo state, Nigeria. Sci. Afr, 12, e00769.

Vidyarthi, S.; Vaddella, V.; Cao, N.; Kuppu, S.; Pandey, P. 2021 Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: A review. Future Foods, 3, 100010.

Yu, Z.; Jung, D.; Park, S.; Hu, Y.; Huang, K.; Rasco, B.A.; Wang, S.; Ronholm, J.; Lu, X.; Chen, 2022 J. Smart traceability for food safety. Crit. Rev. Food Sci. Nutr., 62, 905–916.

Zhao X, Lin CW, Wang J, et al. (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24: 297–312.

Zhao, S. et al., 2001 “Identification and Expression of Cephamycinase bla(CMY) Genes in Escherichia coli and Salmonella Isolates From Food Animals and Ground Meat,” Antimicrobial Agents and Chemotherapy 45, no. 12.

Downloads

Published

2024-11-21

How to Cite

Al-Saeedi, M. K. I., Hussein, H. M. ., & Al-Jebory, H. H. . (2024). Study of Microbiological Contamination in Babylonian Ruminant and Poultry Slaughter. International Journal of Life Science and Agriculture Research , 3(11), 890–897. https://doi.org/10.55677/ijlsar/V03I11Y2024-08

Most read articles by the same author(s)