Agaricus Bisporus Produced by Using Liquid Fertilizer Bacillus sp and Estimation of Protein
DOI:
https://doi.org/10.55677/ijlsar/V04I01Y2025-04Keywords:
Agaricus bisporus, liquid fertilizer, Bacillus sp, estimation, proteinAbstract
The present study aimed evaluation of Bacillus sp to increased produce Agaricus bisporus and estimation of protein .The best production of fruiting bodies achieved 440.83 g/5 kg with the compost of palm frond waste after 21 days of harvest, compared with371.17 g/5 kg from wheat straw, while the use of the Bacillus sp led to increased production rate of 430.00 g/5 kg (P> 0.05) compared to the without the use of vaccine 376.94 g/5 kg, and that the best biological efficiency of 26.5% achieved with the palm frond waste compost, followed by an average of wheat straw The best protein content of 20.68% with fruit bodies from the compost of the mixture, compared with 18.27% on fruit bodies from wheat straw, while the use of the vaccine led to an increase in this content by 19.82% compared with 17.64% without the use of the inoculum.
References
1. Beyer, D. M. (2003,A). Basic Procedures for Agaricus Mushroom Growing. Penn State College of Agricultural Sciences Research, Extension, and Resident Education Programs, Pennsylvania, Chester. Pp. 16
2. Beyer, D. 2007. Mushroom substrate preparation for white button mushroom. Mushroom Science and Technology. Penn State. Department of Plant Pathology Extension. pp. 5.
3. Coles, S. P. ; Barber, W. ; Beyer, D. M. ; Fleischer, S. J. ; Keil, C. ; Rinker, D. L. ; Romaine, C. P. ; Whitney, S. P. and Wuest, P. (2002). Mushroom Integrated Pest Management Handbook. Pennsylvania State University and The Cooperation of the American Mushroom Institute. USA.Pp. 91.
4. Kivaisi, A. K. (2007). Mushroom Cultivation in Tanzania. University of Dar es Salaam, Tanzania. Pp. 42. .
5. Tsivileva O., Shaternikov A., Ponomareva E. edible mushrooms could take advantage of the growth-promoting and biocontrol potential of Azospirillum. Proc. Latvian Acad. Sci. Sect. B. 2022;76:211–217. doi: 10.2478/prolas-2022-0032. [CrossRef] [Google Scholar] .
6. Lucy M., Reed E., Glick B.R. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek. 2004;86:1–25. doi: 10.1023/B:ANTO.0000024903.10757.6e. [PubMed] [CrossRef] [Google Scholar
7. Jiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J. and Guo, J.-H. (2018). Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea, Biol. Control 126, 147–157. doi: 10.1016/j.
8. Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L. and Zhang, L. H. (2002). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species, Appl. Environ. Microbiol. 68(4), 1754–1759. doi: 10.1128/AEM.68.4.1754-1759.2002.
9. Asatiani, M. D., Elisashvili, V., Songulashvili, G., Reznick, A. Z., & Wasser, S. P. (2010). Higher basidiomycetes mushrooms as a source of antioxidants. In Progress in mycology (pp. 311-326).
10. Vedder, P. I. G. (1978). Modern Mushroom Growing. Director of Mushroom Grower's Training Centre in Horst, The Netherlands. Pp. 416
11. Carroll, J. E. (1989). Growing Button Mushrooms. 4-H Member's Guide M-11- a Cornell Cooperative Extension Publication. Cornell University. USA. Pp.5.
12. Cao M, Wang W, Chen Q, et al. (2022) Physicochemical properties and microbial dynamics of different substrate treatment processes for oyster mushroom cultivation. Chin J Appl Environ Biol 28: 705–711. https://doi.org/10.19675/j.cnki.1006-687x.2020.12041 doi: 10.19675/j.cnki.1006-687x.2020.12041
13. O.P. Ahlawat, B. Vijay Ahlawat and Vijay, 2010, Potential of thermophilic bacteria as microbial inoculant for commercial scale white button mushroom (Agaricus bisporus) compost production J. Sci. Ind. Res., 69 (2010), pp. 948-955
14. Muslat, M. M. (2002). Influence of some nutrients and gibberellic acid on the quality and quantity properties of the Oyster mushroom (Pleurotus ostreatus) A Thesis of doctor of philosophy in agriculture sciences / Horticulture dept., College of Agriculture - University of Baghdad , Iraq
15. Y. Gu, X. Xu, Y. Wu, T. Niu, Y. Liu, J. Li, et al. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications Metab Eng, 50 (2018), pp. 109-121
16. F. Xiao, Y. Li, Y. Zhang, H. Wang, L. Zhang, Z. Ding, et al. Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis Appl Microbiol Biot, 104 (12) (2020), pp. 5409-5425
17. B.o. Sun, Z. Bai, L. Bao, L. Xue, S. Zhang, Y. Wei, et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes Environ Int, 144 (2020), p. 105989 .
18. Liu, C.; Sheng, J.; Chen, L.; Zheng, Y.; Lee, D.Y.W.; Yang, Y.; Xu, M.; Shen, L. Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. J. Agricul. Food Chem. 2015, 63, 6009–6018. [Google Scholar] [CrossRef]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Life Science and Agriculture Research
This work is licensed under a Creative Commons Attribution 4.0 International License.