The Effect of Biochar-Silica and N, P, K Fertilization on Soil pH, Silica Content, Phosphorus Uptake, and Rice Yield in Inceptisols

Authors

  • Emma Trinurani Sofyan Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.
  • Della Adelia Noviana Rizca Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.
  • Anni Yuniarti Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.
  • Ania Citraresmini Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.
  • Ade Setiawan Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.
  • Yusup Hidayat Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.
  • Dirga Sapta Sara Agrotechnology Study Program, Faculty of Agriculture, Universitas Padjadjaran, Address Jl. Bandung-Sumedang KM.21, West Java, Indonesia.

DOI:

https://doi.org/10.55677/ijlsar/V04I04Y2025-03

Keywords:

Inceptisols, Organic material, Paddy rice, Rice husk biochar, Silica

Abstract

Rice is a major commodity in Indonesia, but its production in 2023 decreased by 645.09 thousand tons compared to the previous year, partly due to intensive land use leading to soil degradation. Biochar is a soil amendment that can improve soil properties and enhance nutrient retention. Silica plays a crucial role in rice cultivation, particularly in addressing issues related to acidic soil pH. This study aimed to evaluate the effects of a biochar-silica combination derived from rice husk waste and N, P, K fertilizers on soil pH, silica content, phosphorus uptake, and to determine the optimal dosage for achieving the highest rice yield in Inceptisols. The experiment was conducted from October 2024 to January 2025 at the KTNT experimental field using a Randomized Block Design (RBD) with 10 treatments and 3 replications, totaling 30 experimental plots. The combination of biochar-silica and N, P, K fertilizers significantly increased available phosphorus content, soil silica levels, and rice yield components, including panicle length, number of panicles, grains per panicle, straw weight per plot, 1,000-grain weight, harvested dry grain, and milled dry grain. However, it had no significant effect on soil pH or phosphorus uptake by plants. The optimal treatment—biochar (2.5 t ha⁻¹), silica (320 kg ha⁻¹), and N, P, K fertilizers (175 kg ha⁻¹ urea, 25 kg ha⁻¹ SP-36, and 25 kg ha⁻¹ KCl)—resulted in the highest harvested dry grain yield of 3.37 kg per plot.

References

1. Al Mu'min, M. I., Joy, B., & Yuniarti, A. (2016). Dinamika Kalium Tanah dan Hasil Padi Sawah (Oryza sativa L.) akibat Pemberian NPK Majemuk dan Penggenangan pada Fluvaquentic Epiaquepts. Soilrens. 14(1).

2. Amin, M., Kasim, H., & Faisal, F. (2021). Pengaruh Pemberian Sumber Silikon pada Sifat Kimia dan Pertumbuhan Tanaman Padi pada Tiga Jenis Tanah. Jurnal Ilmu Pertanian Indonesia. 26(4), 605-611.

3. Annisa, W. (2021). Biochar-Kompos Berbasis Limbah Kelapa Sawit: Bahan Amandemen untuk Memperbaiki Kesuburan dan Produktivitas Tanah Di Lahan Rawa. Jurnal Sumberdaya Lahan, 15(2), 103-116.

4. Badan Pusat Statistik. (2023). Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Sementara).

5. Basri, A. B., & Chairunnas, A. A. (2015). Pengaruh Media Tumbuh Biochar Sekam Padi terhadap Pertumbuhan Bibit Kelapa Sawit. B Palma. 16(2), 195-202.

6. Chalmardi, Z. K., Abdolzadeh, A., & Sadeghipour, H. R. (2014). Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta physiologiae plantarum, 36, 493-502.

7. Chun, Y., Sheng, G. Y., Chiou, C. T., & Xing, B. S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental science & technology. 38(17), 4649-4655.

8. Dariah, A., Sutono, S., Nurida, L., Hartatik, W., & Pratiwi, E. (2015). Pembenah Tanah untuk Meningkatkan Produktivitas Lahan Pertanian.

9. DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. In Biochar for environmental management. Routledge. 421-454.

10. Dharmika, I. M., & Mulyani, D. S. (2018). Pemberian pupuk silika cair untuk meningkatkan pertumbuhan, hasil, dan toleransi kekeringan padi sawah. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). 46(2), 153-160.

11. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., ... & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for sustainable development. 36, 1-18.

12. Dufey, I., Gheysens, S., Ingabire, A., Lutts, S., & Bertin, P. (2014). Silicon application in cultivated rices (Oryza sativa L. and Oryza glaberrima) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. Journal of Agronomy and Crop Science. 200(2), 132-142.

13. Erfrissadona, Y., Sulistyowati, L., & Setiawan, I. (2020). Valuasi Ekonomi Lingkungan Akibat Alih Fungsi Lahan Pertanian (Suatu Kasus di Kota Tasikmalaya, Jawa Barat). JSEP (Journal of Social and Agricultural Economics). 13(1), 1-15.

14. Fageria, N. K. (2013). Mineral nutrition of rice. CRC press.

15. Fu, Y., Shen, H., Wu, D., & Cai, K. (2012). Silicon-mediated amelioration of Fe2+ toxicity in rice (Oryza sativa L.) roots. Pedosphere. 22(6), 795-802.

16. Gaskin, J., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE. 51(6), 2061-2069.

17. Gunes, A., Inal, A., Taskin, M. B., Sahin, O., Kaya, E. C., & Atakol, A. (2014). Effect of phosphorus‐enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil use and management. 30(2), 182-188.

18. Herlambang, S., Yudhiantoro, D., Gomareuzzaman, M., & Lestari, I. (2021). Biochar Amandemen Tanah dan Mitigasi Lingkungan.

19. Khairati, R., & Syahni, R. (2016). Respons permintaan pangan terhadap pertambahan penduduk di Sumatera Barat. Jurnal Pembangunan Nagari. 1(2), 19-36.

20. Lehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. Routledge.

21. Lei, H., Ren, S. & Julson, J. (2009) The Effects of Reaction Temperature and Time and Particle Size of Corn Stover on Microwave Pyrolysis. Energy and Fuels. 23, 3254-3261. https://doi.org/10.1021/ef9000264.

22. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., ... & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil science society of America journal. 70(5), 1719-1730.

23. Mayendra, Lubis, K. S., & Hidayat, B. (2019). Ketersediaan hara fosfor akibat pemberian biochar sekam padi dan pupuk kandang sapi pada inceptisol kuala bekala. Jurnal Online Pertanian Tropik. 6(2), 287-293.

24. Monger, H. C., & Kelly, E. F. (2002). Silica minerals. Soil mineralogy with environmental applications. 7, 611-636.

25. Mukhlis., Sarifuddin., & Hanum, H. (2011). Kimia Tanah. Teori dan Aplikasi. Universitas Sumatera Utara Press, Medan.

26. Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., & Hicks, K. B. (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and bioenergy. 34(1), 67-74.

27. Muthohharoh, N., Sasongko, L.A., & Awami, S.N. (2018). Preferensi petani terhadap beberapa varietas padi di Kecamatan Blora Kabupaten Blora. Agronomika. 12(2).

28. Peraturan Menteri Pertanian. (2006). Peraturan Menteri Pertanian Nomor 02 Tahun 2006 Tentang Pupuk Organik dan Pembenah Tanah.

29. Roidah, I. S. (2013). Manfaat penggunaan pupuk organik untuk kesuburan tanah. Jurnal Bonorowo. 1(1), 30-43.

30. Setyastika, U. S., & Suntari, R. (2019). Pengaruh aplikasi bokashi terhadap dinamika ketersediaan N, P, dan S pada Inceptisol Karangploso, Malang. Jurnal Tanah dan Sumberdaya Lahan. 6(2), 1291-1299.

31. Sinaga, R. (2020). Pengaruh Pemberian Biochar Sekam Padi dan Pupuk Organik Cair Bonggol Pisang Terhadap Pertumbuhan dan Produksi Pada Tanaman Cabai Rawit (Capsicum Frutescens L.).

32. Shamshuddin, J., Elisa, A. A., Shazana, M. A. R. S., & Fauziah, I. C. (2013). Rice defense mechanisms against the presence of excess amount of Al3+ and Fe2+ in the water. Australian Journal of Crop Science. 7(3), 314-320.

33. Shareef, T. M. E., & Zhao, B. (2016). The fundamentals of biochar as a soil amendment tool and management in agriculture scope: an overview for farmers and gardeners. Journal of Agricultural Chemistry and Environment. 6(1), 38-61.

34. Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports. 10(1), 12249.

35. Shofia, N. M. L. A. S., & Awami, N. (2017). Preferensi petani terhadap beberapa varietas padi di Kecamatan Blora Kabupaten Blora. Jurnal Agronomika. 12(02), 80-86.

36. Siregar, A., & Annisa, W. (2020). Ameliorasi berbasis unsur hara silika di lahan rawa. Jurnal Sumberdaya Lahan, 14(1), 37-47.

37. Sohi, S. P., Lopez-Capel, E., Krull, E., & Bol, R. (2010). Biochar, Climate Change and Soil: A Review of the Evidence. Soil Use and Management, 26(2), 205-220.

38. Sonia, A. V., & Setiawati, T. C. (2022). Aktivitas bakteri pelarut fosfat terhadap peningkatan ketersediaan fosfat pada tanah masam. Agrovigor: Jurnal Agroekoteknologi. 15(1), 44-53.

39. Suhada, I., Kusumawardani, W., & Fitri, I. (2022). Pengaruh Pupuk Granular Silikat Dengan Pupuk Rekomendasi Umum Terhadap Pertumbuhan Dan Produksi Tanaman Padi (Oryza Sativa L.) Di Lahan Sawah Irigasi Teknis. Jurnal Agroteknologi. 2(1), 19-36.

40. Syarifah, R. N. K., Ulinuha, Z., & Purwanto, P. (2021). Pengaruh pemupukan N terhadap serapan dan efisiensi penggunaan N, serta hasil padi hibrida. Jurnal Agro. 8(2), 262-273.

41. Tesfaye, F., Liu, X., Zheng, J., Cheng, K., Bian, R., Zhang, X., ... & Pan, G. (2021). Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environmental Science and Pollution Research. 28(26), 34108-34120.

42. Tubana, B. S., & Heckman, J. R. (2015). Silicon in soils and plants. Silicon and plant diseases. 7-51.

43. Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil use and management. 27(2), 205-212.

44. Wang M. K., Tan, W. F., Zhang, R., Cao, H., Huang, C. Q., & Yang, Q. K. (2014). Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena. 121, 22-30.

45. Widowati, L. R., Hartatik, W., Setroyini, D., & Trisnawati, Y. (2022). Pupuk Organik Dibuatnya Mudah, Hasil Tanam Melimpah. Kementerian Pertanian Republik Indonesia.

46. Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol. 102(3), 3488–3497.

47. Zubairu, A. & Ngala, A & Kwari, Samson & Usman, Kachalla & Tela Buba, M. (2023). Exploring the effect of biochar on soil pH (A review).

48. Zulputra, Z., Wawan, W., & Nelvia, N. (2014). Respon Padi Gogo (Oryza sativa L.) Terhadap Pemberian Silikat dan Pupuk Fosfat Pada Tanah Ultisol. Jurnal Agroteknologi, 4(2), 1-10.

Downloads

Published

2025-04-17

How to Cite

The Effect of Biochar-Silica and N, P, K Fertilization on Soil pH, Silica Content, Phosphorus Uptake, and Rice Yield in Inceptisols. (2025). International Journal of Life Science and Agriculture Research , 4(04), 255-260. https://doi.org/10.55677/ijlsar/V04I04Y2025-03

Similar Articles

11-20 of 72

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)