Interaction between Rice Husk Biochar and Three Species of Fungus on Growth and Yield of Shallot (Allium ascalonicum L.)

Authors

  • Padil Wijaya Agrotechnology Master Program, Faculty of Agriculture, Hasanuddin University, Makassar, South Sulawesi, Indonesia.
  • Elkawakib Syam’un Agrotechnology Study Program, Departement of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, South Sulawesi, Indonesia.
  • Syatrianty A. Syaiful Agrotechnology Study Program, Departement of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, South Sulawesi, Indonesia.

DOI:

https://doi.org/10.55677/ijlsar/V02I05Y2023-05

Keywords:

Beauveria bassiana; Metarhizium anisopliae; Rice husk biochar; shallot; Trichoderma asperellum

Abstract

This study aimed to evaluate the application of rice husk biochar and three types of fungi on shallot growth and yield components of shallot. The research was carried out as a Split Plot Design. As the main plot, rice husk biochar with three levels, namely 0 t ha-1, 2 t ha-1, and 4 t ha-1. As subplots, three types of fungus with four levels, namely without fungus/control, Trichoderma asperellum, Beauveria bassiana, and Metarhizium anisopliae. The results showed that there was an interaction between of rice husk biochar 4 t ha-1 with three types of fungi namely Trichoderma asperellum which gave the best results for N content (2.35%) and P content (0.57%) in shallot leaves. Application of rice husk biochar 4 t ha-1 gave the best results on bulb diameter (35.66 mm). The application of three types of fungi, namely Trichoderma asperellum, gave the best results for plant height (43.47 cm), number of leaves (7.30 strands), bulb diameter (35.33 mm), dry bulb weight (21.23 g), yield per hectare (11.56 tons), and the lowest percentage of fusarium wilt disease (1.36%), and Beauveria bassiana with the lowest percentage of Spodoptera exigua attacks (5.33%). These results indicate that applied rice husk biochar and three types of fungi can increase the growth and yield of shallot plants and suppress Spodoptera exigua attack and the incidence of Fusarium wilt disease in shallots.

References

Abukari, A. (2019). Influence of RHB on water holding capacity of soil in the Savannah ecological zone of Ghana. Turkish J. Agric – Food Sci. Technol. 7: 888–891.

Antari, N.M., Darmayasa, I.B.G., and Hardini, J. (2020). Effectiveness of Trichoderma Asperellum TKD with mediator of manure to control fusarium disease on red pepper plant (Capsicum annum L.). Simbiosis. 8: 63-71.

Bailey, B.A., Strem, M.D., and Wood, D. (2009). Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol. Res. 113: 1365-1376.

Central Statistics Agency. (2021). National Shallot Plant Production. [Online]. Available at https://www.bps.go.id/site.(https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.html.

Chu, Z.J., Sun, H.H., Zhu, X.G., Ying, S.H., and Feng, M.G. (2017). Discovery of a new intravacuolar protein required for the autophagy, development and virulence of Beauveria bassiana. Environ. Microbiol. 19: 2806–2818.

Feng, P., Shang, Y., Cen, K., and Wang, C. (2015). Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc. Natl. Acad. Sci. U.S.A. 112: 11365–11370.

George, T.S., Gregory, P.J., Wood, M., Read, D., and Buresh, R.J. (2002). Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol. Biochem. 34: 1487-1494.

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., and Lorito, M. (2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 22: 43-56.

Hasyim, A., Setiawati, W., Jayanti, H., Hasan, N., and Syakir, M. (2017). Identification and pathogenicity of entomopathogenic fungi for controlling the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). Adv. Agric. Bot. 9: 34-46.

Hawayanti, E. and Palmasari, B. (2018). Increasing the production of shallots (Allium ascalonicum L.) through fertilizing livestock waste on tidal land. Klorofil: Jurnal Penelitian Ilmu-Ilmu Pertanian. 13: 114-122.

Hermanto, C., Maharijaya, A., Hayati, I.W., Rosliani, R., Setyawati, A., Husni, I., Sari, M., Wibawa T., Sunarto, B., Kurdi, Adin, A., Julietha, D., Suad, D., Efendi, M., Hariyanto, Nggaro, Y.Y.M., Anggraeni, F., Waludin, J., Sumarno, A., Subardi, and Setiani, R. (2017). Shallot Cultivation Guidelines Using Seeds. Jakarta: Directorate of Vegetables and Medicinal Plants.

Herrera-Téllez, V.I., Cruz-Olmedo, A.K., Plasencia, J., Gavilanes-Ruíz, M., Arce-Cervantes, O., Hernández-León, S., and Saucedo-García, M. (2019). The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 20: 1-13.

Ismail, N., Rosmana, A., Sjam, S., and Ratnawati, R. (2020). Shallot basal bulb rot management through integration of Trichoderma asperellum, composted plant residues and natural mulch. J. Pure. Appl. Microbiol. 14: 1779-1788.

Karam, D.S., Nagabovanalli, P., Rajoo, K.S., Ishak, C.F., Abdu, A., Rosli, Z., Muharam, M., and Zulperi, D. (2022). An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J. Saudi. Soc. Agric. Sci. 21: 149-159.

Kim, H.S., Kim, K.R., Yang, J.E., Ok, Y.S., Owens, G., Nehls, T., Wessolek, G., and Kim, K.H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere. 142: 153-159.

Köhl, J., Kolnaar, R., and Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant. Sci. 10: 845.

Nguyen, T.T.N., Xu, C.Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, H.M., and Bai, S.H. (2017). Effects of Biochar on Soil Available Inorganic Nitrogen: A Review and Meta- Analysis. Geoderma. 288: 79–96.

Nilamsari, E.I., Nugroho, L.H., and Sukirno, S. (2021). Effectiveness of N-Hexane and ethanol extract of giant calotrope (Calotropis gigantea L.) leaves as insecticide against shallot pest Spodoptera exigua (Hübner): Proceedings of the 7th International Conference on Biological Science (ICBS 2021) (pp. 284-289). Atlantis Press.

Pakpahan, T.E., Hidayatullah, T., and Mardiana, E. (2020). Application of biochar and manure to shallot cultivation in inceptisol soil at the Medan Agricultural Development Polytechnic experimental garden. Jurnal Agrica Ekstensia. 14: 49-53.

Pangestiningsih, Y. (2011). Test the effectiveness of several entomopathogenic fungi and botanical insecticides against Spodoptera exigua Hubn. on shallot plants (Allium ascalonicum L.). Jurnal Ilmu Pertanian KULTIVAR. 5: 90-91.

Pedrini, N. (2018). Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 122: 538–545.

Razak, N.A., Nasir, B., and Khasanah, N. (2016). Effectiveness of Beauveria bassiana Vuill at the control Spodoptera exigua Hubner (Lepidoptera: Noctuidae) on shallot plant local Palu (Allium wakegi). e-J. Agrotekbis. 4: 565-570.

Rosmana, A., Sjam, S., Asman, A., Jayanti, N.J., Satriana, S., Padang, A.T., and Hakkar, A.A. (2018). Systemic deployment of Trichoderma asperellum in Theobroma cacao regulates co-occurring dominant fungal endophytes colonization. J. Pure. Appl. Microbiol. 12: 1071-1084.

Scudeletti, D., Crusciol, C.A.C., Bossolani, J.W., Moretti, L.G., Momesso, L., Tubana, B.S., Castro, S.G.Q.d., Oliveira, E.F.D., and Hungria, M. (2021). Trichoderma asperellum inoculation as a tool for attenuating drought stress in sugarcane. Front. Plant. Sci. 12: 1-13.

Septania, V.P., Saidah., and Basri, Z. (2022). Growth and yield of shallot (Allium ascalonicum L.) on the combination of Trichoderma asperellum and manure. Jurnal Agrotech. 12: 1-9.

Siahaan, P., Wongkar, J., Wowiling, S., and Mangais, R. (2021). Pathogenicity of Beauveria bassiana (Bals.) Viull. isolated from several host species against the green ladybug, Nezara viridula L. (Hemiptera: Pentatomidae). Jurnal Ilmiah Sains. 21: 26-33.

Soumia, P.S., Karuppaiah, V., Mahajan, V., and Singh, M. (2020). Beet Armyworm Spodoptera exigua: Emerging Threat to Onion Production. Natl. Acad. Sci. Lett. 43: 473-476.

Sriwantoko, S., Syam’un, E., and Ulfa, F. (2020). Growth of red onion plant (Allium ascalonicum L.) in an application by phosphate solubilizing microbes and goat dung compost. Adv. Environ. Biol. 14: 23-30.

Stracquadanio, C., Quiles, J.M., Meca, G., and Cacciola, S.O. (2020). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. J. Fungi. 6: 263.

Supartha, I.N.Y., Wijana, G., and Andyana, G.M. (2012). Application of organic fertilizer types to rice plants in organic farming systems. E-Jurnal Agroteknologi Tropika. 1: 98-106.

Supartha, I.W., Susila, I.W., Sumiartha, I.K., Rauf, A., Cruz, L.B.D., Yudha, I.K.W., Utama, I.W.E.K., and Wiradana, P.A. (2022). Preference, population development, and molecular characteristics of Spodoptera exigua (Lepidoptera: Noctuidae) on shallot cultivars: A field trial scale. Biodiversitas. 23: 783-792.

Supyani., Poromarto, S.H., Supriyadi., Permatasari, F.I., Putri, D.H., Putri, D.T., and Hadiwiyono. (2021). Disease intensity of moler and yield losses of Shallot cv. Bima caused by Fusarium oxysporum f.sp. cepae in Brebes Central Java: IOP Conference Series: Earth and Environmental Science. The 8th International Conference on Sustainable Agriculture and Environment (p. 012049). Surakarta, Indonesia: IOP Publishing.

Tchameni, S.N., Sameza, M.L., O’donovan, A., Fokom, R., Ngonkeu, E.L.M., Nana, L.W., Etoa, F.X., and Nwaga, D. (2017). Antagonism of Trichoderma asperellum against Phytophthora megakarya and its potential to promote cacao growth and induce biochemical defence. Mycology. 8: 84–92.

Triadiawarman, D., Aryanto, D., and Krisbiyantoro, J. (2022). The role of macro nutrients on the growth and yield of shallots (Allium cepa L.). Jurnal Agrifor: Jurnal Ilmu Pertanian dan Kehutanan. 21: 27-32.

Triwidodo, H. and Tanjung, M.H. (2020). Shallot (Allium ascalonicum) pests and its control measures in Brebes, Central Java. Agrovigor. 13: 149–154.

Wang, H., Peng, H., Li, W., Cheng, P., and Gong, M. (2021). The toxins of Beauveria bassiana and strategies to improve their virulence to insects. Front. Microbiol. 12: 1-11.

Wang, H., Zhang, R., Duan, Y., Jiang, W., Chen, X., Shen, X., Yin, C., and Mao, Z. (2021). The endophytic strain Trichoderma asperellum 6S-2: an efficient biocontrol agent against apple replant disease in China and a potential plant-growth-promoting fungus. J. Fungi. 7: 1050.

Wang, J., Ying, S.H., Hu, Y., and Feng, M.G. (2017). Vital role for the J-domain protein Mdj1 in asexual development, multiple stress tolerance, and virulence of Beauveria bassiana. Appl. Microbiol. Biotechnol. 101: 185–195.

Downloads

Published

2023-05-22

How to Cite

Padil Wijaya, Elkawakib Syam’un, & Syatrianty A. Syaiful. (2023). Interaction between Rice Husk Biochar and Three Species of Fungus on Growth and Yield of Shallot (Allium ascalonicum L.). International Journal of Life Science and Agriculture Research , 2(05), 71–79. https://doi.org/10.55677/ijlsar/V02I05Y2023-05

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.