An Analysis of the Nitrogen Dynamic Impacted by Biochar and Compost on Ultisol Soil Using Stable Isotope N-15

Authors

  • Ania Citraresmini Faculty of Agriculture, Universitas Padjadjaran
  • Emma Trinurani Sofyan Faculty of Agriculture, Universitas Padjadjaran
  • Dirga Sapta Sara Faculty of Agriculture, Universitas Padjadjaran
  • Taufiq Bachtiar National Research and Innovation Agency of Indonesia
  • Nurrobi Fahmi National Research and Innovation Agency of Indonesia

DOI:

https://doi.org/10.55677/ijlsar/V04I03Y2025-04

Keywords:

acid soil; fertilizer; isotope 15N; soil amendment; biochar

Abstract

Biochar has been proposed as a potential environmental-friendly soil amendment to increase soil quality and crop production and reduce chemical fertilizer use, especially in low-fertility soils. The combination of biochar with other soil amendment materials, namely compost, is carried out to increase the efficiency of nitrogen fertilizers, in particular on Ultisol soil. An experiment using the isotope stable 15N technique was conducted to investigate the effects of rice husk biochar, compost, and urea fertilizer on nitrogen efficiency, soil pH, EC, and maize production. The pot experiment was designed using Completely Randomized Design, and the treatments were: (1) control; (2) 50% urea; (3) 50% urea + biochar; (4) 50% urea + compost; (5) 50% urea + biochar + compost; (6) 100% urea; (7) 100% urea + biochar + compost. The results showed that combined biochar and compost significantly increased N-uptake derived from 15N-labelled fertilizer, total N uptake by plants, 15N plant recovery, and soil 15N residues, and decreased 15N loss compared to urea alone. This treatment also significantly increased the grain yields and total biomass of the maize plants.

References

1. Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543. https://doi.org/10.1016/j.scitotenv.2015.11.054

2. Agegnehu, G., Nelson, P. N., & Bird, M. I. (2016). Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil and Tillage Research, 160. https://doi.org/10.1016/j.still.2016.02.003

3. Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. In Applied Soil Ecology (Vol. 119, pp. 156–170). https://doi.org/10.1016/j.apsoil.2017.06.008

4. Ahmed, R., Li, Y., Mao, L., Xu, C., Lin, W., Ahmed, S., & Ahmed, W. (2019). Biochar effects on mineral nitrogen leaching, moisture content, and evapotranspiration after 15N urea fertilization for vegetable crop. Agronomy, 9(6). https://doi.org/10.3390/agronomy9060331

5. Biederman, L. A., & Stanley Harpole, W. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037

6. Bradbury, N. J., Jenkinson, D. S. J., Whitmore, A. P., & Hart, P. B. S. (1993). Modelling the fate of nitrogen in crop and soil in the years following application of15N-labelled fertilizer to winter wheat. The Journal of Agricultural Science, 121(3). https://doi.org/10.1017/S0021859600085567

7. Ch’Ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2016). IMPROVING PHOSPHORUS AVAILABILITY, NUTRIENT UPTAKE and DRY MATTER PRODUCTION of ZEA MAYS L. on A TROPICAL ACID SOIL USING POULTRY MANURE BIOCHAR and PINEAPPLE LEAVES COMPOST. Experimental Agriculture, 52(3). https://doi.org/10.1017/S0014479715000204

8. Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3). https://doi.org/10.1080/03650340.2013.789870

9. Commoner, B. (1970). Threats to the Integrity of the Nitrogen Cycle: Nitrogen Compounds in Soil, Water, Atmosphere and Precipitation. In Global Effects of Environmental Pollution. https://doi.org/10.1007/978-94-010-3290-2_9

10. Craswell, E. T., Chalk, P. M., & Kaudal, B. B. (2021). Role of 15N in tracing biologically driven nitrogen dynamics in soils amended with biochar: A review. In Soil Biology and Biochemistry (Vol. 162). https://doi.org/10.1016/j.soilbio.2021.108416

11. Dong, D., Wang, C., Van Zwieten, L., Wang, H., Jiang, P., Zhou, M., & Wu, W. (2020). An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. Journal of Soils and Sediments, 20(8). https://doi.org/10.1007/s11368-019-02401-8

12. Fiorentino, N., Sánchez-Monedero, M. A., Lehmann, J., Enders, A., Fagnano, M., & Cayuela, M. L. (2019). Interactive priming of soil N transformations from combining biochar and urea inputs: A 15 N isotope tracer study. Soil Biology and Biochemistry, 131. https://doi.org/10.1016/j.soilbio.2019.01.005

13. Gao, J., Zhao, Y., Zhang, W., Sui, Y., Jin, D., Xin, W., Yi, J., & He, D. (2019). Biochar prepared at different pyrolysis temperatures affects urea-nitrogen immobilization and N2O emissions in paddy fields. PeerJ, 2019(6). https://doi.org/10.7717/peerj.7027

14. Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2). https://doi.org/10.2134/agronj2009.0083

15. Ghorbani, M., Asadi, H., & Abrishamkesh, S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3). https://doi.org/10.1016/j.iswcr.2019.05.005

16. Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. In Agriculture, Ecosystems and Environment (Vol. 206). https://doi.org/10.1016/j.agee.2015.03.015

17. Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P., & Vithanage, M. (2019). Biochar from municipal solid waste for resource recovery and pollution remediation. In Environmental Chemistry Letters (Vol. 17, Issue 3). https://doi.org/10.1007/s10311-019-00866-0

18. Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5). https://doi.org/10.1007/s11368-019-02264-z

19. Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. In Biochar (Vol. 2, Issue 4). https://doi.org/10.1007/s42773-020-00065-z

20. Huang, M., Yang, L., Qin, H., Jiang, L., & Zou, Y. (2014). Fertilizer nitrogen uptake by rice increased by biochar application. Biology and Fertility of Soils, 50(6). https://doi.org/10.1007/s00374-014-0908-9

21. Johnston, A. E., Goulding, K. W. T., & Poulton, P. R. (1986). Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management, 2(1). https://doi.org/10.1111/j.1475-2743.1986.tb00669.x

22. Jones Jr., J. B. (2012). Plant Nutrition and Soil Fertility Manual. In Plant Nutrition and Soil Fertility Manual. https://doi.org/10.1201/b11577

23. Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., Van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., & Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48(6–7). https://doi.org/10.1071/SR10009

24. Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A., & Xu, J. (2010). Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science and Policy, 13(8). https://doi.org/10.1016/j.envsci.2010.07.006

25. Lehmann, J., & Joseph, S. (2012). Biochar for environmental management: Science and technology. In Biochar for Environmental Management: Science and Technology (2nd ed.). Routledge. https://doi.org/10.4324/9781849770552

26. Liu, Q., Zhang, Y., Liu, B., Amonette, J. E., Lin, Z., Liu, G., Ambus, P., & Xie, Z. (2018). How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 426(1–2). https://doi.org/10.1007/s11104-018-3619-4

27. Lü, P., Zhang, Z. W., Jin, L. B., Liu, W., Dong, S. T., & Liu, P. (2012). Effects of nitrogen application stage on grain yield and nitrogen use efficiency of high-yield summer maize. Plant Soil and Environment, 58(5), 211–216.

28. Lutes, K., Oelbermann, M., Thevathasan, N. V., & Gordon, A. M. (2016). Effect of nitrogen fertilizer on greenhouse gas emissions in two willow clones (Salix miyabeana and S. dasyclados) in southern Ontario, Canada. Agroforestry Systems, 90(5). https://doi.org/10.1007/s10457-016-9897-z

29. Ma, R., Guan, S., Dou, S., Wu, D., Xie, S., & Ndzelu, B. S. (2020). Different rates of biochar application change 15N retention in soil and 15N utilization by maize. Soil Use and Management, 36(4). https://doi.org/10.1111/sum.12649

30. Manolikaki, I., & Diamadopoulos, E. (2019). Positive Effects of Biochar and Biochar-Compost on Maize Growth and Nutrient Availability in Two Agricultural Soils. Communications in Soil Science and Plant Analysis, 50(5). https://doi.org/10.1080/00103624.2019.1566468

31. Martinsen, V., Alling, V., Nurida, N. L., Mulder, J., Hale, S. E., Ritz, C., Rutherford, D. W., Heikens, A., Breedveld, G. D., & Cornelissen, G. (2015). pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Science and Plant Nutrition, 61(5). https://doi.org/10.1080/00380768.2015.1052985

32. Masulili, A., Utomo, W. H., & MS, S. (2010). Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1). https://doi.org/10.5539/jas.v2n1p39

33. Mavi, M. S., Singh, G., Singh, B. P., Sekhon, B. S., Choudhary, O. P., Sagi, S., & Berry, R. (2018). Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. Journal of Soil Science and Plant Nutrition, 18(1). https://doi.org/10.4067/S0718-95162018005000201

34. Mia, S., Singh, B., & Dijkstra, F. A. (2017). Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. GCB Bioenergy, 9(7). https://doi.org/10.1111/gcbb.12430

35. Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4). https://doi.org/10.1016/j.geoderma.2011.04.021

36. Oldfield, T. L., Sikirica, N., Mondini, C., López, G., Kuikman, P. J., & Holden, N. M. (2018). Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. Journal of Environmental Management, 218. https://doi.org/10.1016/j.jenvman.2018.04.061

37. Pramono, A., Adriany, T. A., Yulianingsih, E., Sopiawati, T., & Hervani, A. (2021). Combined compost with biochar application to mitigate greenhouse gas emission in paddy field. IOP Conference Series: Earth and Environmental Science, 653(1). https://doi.org/10.1088/1755-1315/653/1/012109

38. Rimski-Korsakov, H., Rubio, G., & Lavado, R. S. (2012). Fate of the nitrogen from fertilizers in field-grown maize. Nutrient Cycling in Agroecosystems, 93(3), 253–263. https://doi.org/10.1007/s10705-012-9513-1

39. Schofield, H. K., Pettitt, T. R., Tappin, A. D., Rollinson, G. K., & Fitzsimons, M. F. (2019). Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Science of the Total Environment, 690. https://doi.org/10.1016/j.scitotenv.2019.07.116

40. Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69262-x

41. Sun, C. X., Hao, L., Wang, D., Li, C., Zhang, C., Chen, X., Fu, J., & Zhang, Y. L. (2019). Nitrogen utilisation and metabolism in maize (Zea mays L.) plants under different rates of biochar addition and nitrogen input conditions. Plant Biology, 21(5). https://doi.org/10.1111/plb.12997

42. Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012). A wood based low-temperature biochar captures NH 3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil, 353(1–2). https://doi.org/10.1007/s11104-011-1010-9

43. Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In Reviews in Environmental Science and Biotechnology (Vol. 19, Issue 1). https://doi.org/10.1007/s11157-020-09523-3

44. Wang, Z., Wang, Z., Luo, Y., Zhan, Y., Meng, Y., & Zhou, Z. (2020). Biochar increases 15N fertilizer retention and indigenous soil N uptake in a cotton-barley rotation system. Geoderma, 357. https://doi.org/10.1016/j.geoderma.2019.113944

45. Zahra, M. B., Aftab, Z. E. H., Akhter, A., & Haider, M. S. (2021). Cumulative effect of biochar and compost on nutritional profile of soil and maize productivity. Journal of Plant Nutrition, 44(11). https://doi.org/10.1080/01904167.2021.1871743

46. Zhu, Q. H., Peng, X. H., Huang, T. Q., Xie, Z. Bin, & Holden, N. M. (2014). Effect of Biochar Addition on Maize Growth and Nitrogen Use Efficiency in Acidic Red Soils. Pedosphere, 24(6). https://doi.org/10.1016/S1002-0160(14)60057-6

Downloads

Published

2025-03-21

How to Cite

An Analysis of the Nitrogen Dynamic Impacted by Biochar and Compost on Ultisol Soil Using Stable Isotope N-15. (2025). International Journal of Life Science and Agriculture Research , 4(03), 182-190. https://doi.org/10.55677/ijlsar/V04I03Y2025-04

Similar Articles

11-20 of 100

You may also start an advanced similarity search for this article.