A Review: Formulation of Alternative Culture Media
DOI:
https://doi.org/10.55677/ijlsar/V02I08Y2023-01Abstract
Culture media is the inevitable part of study of microorganisms and plays a significant role for flourishing microbial growth and metabolism. It consists of variety of macro as well as microelements. It can be raw materials or the synthetic media. However, traditional culture media components, especially synthetic media components are costly. As a result, numerous researches have been attempted to create and assess the effectiveness of alternative, affordable culture media, often employing basic materials that are natural and easily accessible. The current study reviews at several plant-based culture media formulations for microorganism growth and the generation of industrially relevant microbial chemicals. Most formulations which have been studied includes horticulture ingredients, vegetable substrates including soy, certain beans, maize and rice. In terms of microbial growth efficiency and manufacturing cost, alternative culture media frequently produce results that are satisfactory compared to standard media.
References
RAMÍREZ, J. A., CASTAÑÓN-RODRÍGUEZ, J. F., & URESTI-MARÍN, R. M. (2020). An exploratory study of possible food waste risks in supermarket fruit and vegetable sections. Food Science and Technology, 41, 967-973.
Martínez-Montaño, E., Sarmiento-Machado, R. M., Osuna-Ruíz, I., Benítez-García, I., Pacheco-Aguilar, R., Navarro-Peraza, R. S., & Salazar-Leyva, J. A. (2021). Effect of Degree of Hydrolysis on Biochemical Properties and Biological Activities (Antioxidant and Antihypertensive) of Protein Hydrolysates from Pacific Thread Herring (Ophistonema libertate) Stickwater. Waste and Biomass Valorization, 1-13.
Leira, M. H., NASCIMENTO, A. F. D., Alves, F. R., Orfao, L., Lacerda, Y. G., Botelho, H. A., ... & Lago, A. D. A. (2019). Characterization of different techniques for obtaining minced fish from tilapia waste. Food Science and Technology, 39, 63-67.
COSTA, R. S. D., SANTOS, O. V. D., LANNES, S. C. D. S., Casazza, A. A., Aliakbarian, B., Perego, P., ... & SILVA JÚNIOR, J. O. C. (2019). Bioactive compounds and value-added applications of cupuassu (Theobroma grandiflorum Schum.) agroindustrial by-product. Food Science and Technology, 40, 401-407.
Tagliani, C., Perez, C., Curutchet, A., Arcia, P., & Cozzano, S. (2019). Blueberry pomace, valorization of an industry by-product source of fibre with antioxidant capacity. Food Science and Technology, 39, 644-651.
Cruz, C. H. D. S., Santos, J. B. D., Santos, F. P. D., Silva, G. M. M., Cruz, E. F. N. D., Ramos, G. L. D. P. A., & Nascimento, J. D. S. (2020). Texturized soy protein as an alternative low-cost media for bacteria cultivation.
Rouf, A., Kanojia, V., Naik, H. R., Naseer, B., & Qadri, T. (2017). An overview of microbial cell culture. Journal of Pharmacognosy and Phytochemistry, 6(6), 1923-1928.
Uthayasooriyan, M., Pathmanathan, S., Ravimannan, N., & Sathyaruban, S. (2016). Formulation of alternative culture media for bacterial and fungal growth.
Jadhav, P., Sonne, M., Kadam, A., Patil, S., Dahigaonkar, K., & Oberoi, J. K. (2018). Formulation of cost effective alternative bacterial culture media using fruit and vegetables waste. Int. J. Curr. Res. Rev, 10, 6-15.
SANTOS, F. P. D., MAGALHÃES, D. C. M. M. D., Nascimento, J. D. S., & RAMOS, G. L. D. P. A. (2021). Use of products of vegetable origin and waste from hortofruticulture for alternative culture media. Food Science and Technology, 42.
Basu, S., Bose, C., Ojha, N., Das, N., Das, J., Pal, M., & Khurana, S. (2015). Evolution of bacterial and fungal growth media. Bioinformation, 11(4), 182.
Deivanayaki, M., & Antony, I. P. (2012). Alternative vegetable nutrient source for microbial growth. International Journal of Biosciences (IJB), 2(5), 47-51.
Wasas, A. D., Huebner, R. E., & Klugman, K. P. (1999). Use of Dorset egg medium for maintenance and transport of Neisseria meningitidis and Haemophilus influenzae type b. Journal of clinical microbiology, 37(6), 2045-2046.
Tijani, I. D. R., Jamal, P., Alam, M. Z., & Mirghani, M. E. S. (2012). Optimization of cassava peel medium to an enriched animal feed by the white rot fungi Panus tigrinus M609RQY. International Food Research Journal, 19(2).
Jamal, P., Saheed, O. K., Kari, M. I. A., Alam, Z., & Muyibi, S. A. (2013). Cellulolytic fruits wastes: a potential support for enzyme assisted protein production. J. Boil. Sci, 13, 379-385.
Kahraman, S. S., & Gurdal, I. H. (2002). Effect of synthetic and natural culture media on laccase
Milala, M. A., Shugaba, A., Gidado, A., Ene, A. C., & Wafar, J. A. (2005). Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Research journal of agriculture and biological sciences, 1(4), 325-328.
Siddiqui, A., Salahuddin, T., & Riaz, A. (2014). Production of amylase from Bacillus sp. AY3 using fruit peels as substrate. FUUAST Journal of Biology, 4(2), 213-215.
Kindo, A. J., Tupaki-Sreepurna, A., & Yuvaraj, M. (2016). Banana peel culture as an indigenous medium for easy identification of late-sporulation human fungal pathogens. Indian journal of medical microbiology, 34(4), 457-461.
Hasanin, M. S., & Hashem, A. H. (2020). Eco-friendly, economic fungal universal medium from watermelon peel waste. Journal of Microbiological Methods, 168, 105802.
Carota, E., Petruccioli, M., D’Annibale, A., Gallo, A. M., & Crognale, S. (2020). Orange peel waste–based liquid medium for biodiesel production by oleaginous yeasts. Applied microbiology and biotechnology, 104(10), 4617-4628.
Verma, N., Bansal, M. C., & Kumar, V. (2011). Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. Bioresources, 6(2), 1505-1519.
Cattelan, A. J., & Dall'Agnol, A. (2018). The rapid soybean growth in Brazil.
Caldeirão, L., Bosso, A., Tomal, A. A. B., Busanello, M., & Spinosa, W. A. (2015). Avaliação do desenvolvimento de bactérias lácticas em melaço de soja. Blucher Biochemistry Proceedings, 1(2), 369.
Shareef, S. A. (2019). Formulation of alternative culture media from natural plant protein sources for cultivation of different bacteria and fungi. Zanco Journal of Pure and Applied Sciences, 31(4), 61-69.
Gabunia, K., Deslate, H. M., & Garcia, J. (2019). Effectiveness of corn husk extract as an alternative culture media for the growth of Escherichia coli and Staphylococcus aureus. Effectiveness of Corn Husk Extract as an Alternative Culture Media for the growth of Escherichia coli and Staphylococcus aureus, 39(2), 4-4.
Andrade, C. P. D. (2017). Meios de cultura alternativos para produção de biomassa de Pleurotus eryngii.
Berde, C. V., & Berde, V. B. (2015). Vegetable waste as alternative microbiological media for laboratory and industry. World Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 1488-1494.
Aversari, M., Nascimento, B. L. A. D., Martins, N. C., Lucena, R. F. P. D., & Bonifácio, K. M. (2018). Cultivo de microalgas em meio alternativo e de baixo custo, enriquecido com resíduos de compostagem: uma proposta para melhoria de vida dos pescadores da Paraíba. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 5(11), 969-985.
Calixto, C. D., da Silva Santana, J. K., de Lira, E. B., Sassi, P. G. P., Rosenhaim, R., da Costa Sassi, C. F., ... & Sassi, R. (2016). Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresource Technology, 221, 438-446.
de Medeiros, V. P. B., Pimentel, T. C., Varandas, R. C. R., Dos Santos, S. A., de Souza Pedrosa, G. T., da Costa Sassi, C. F., ... & Magnani, M. (2020). Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture medium. Food Research International, 137, 109722.
García-Sánchez, M. E., Robledo-Ortiz, J. R., Jiménez-Palomar, I., González-Reynoso, O., & González-García, Y. (2020). Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana de Ingeniería Química, 19(2), 851-865.
Yang, Y., Dou, Y., Huang, Y., & An, S. (2017). Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Frontiers in Microbiology, 8, 2198.
Freitas, M., Gudiña, E. J., Silvério, S. C., Rodrigues, L. R., & Gonçalves, L. R. B. (2016). Produção de lipase a partir de Candida rugosa NRRL Y-95 utilizando meio de cultura contendo resíduos agroindustriais.
Mohammed, B. B., Shatti, Z. O., Jasim, E. I., Dari, W. A., & Alfraji, N. (2020). Local culture medium from the legumes mixture as a novel media for the growth and stimulation of prodigiosin pigment which production from Serratia marcescens that isolated environmentally. Plant Archives, 20(1), 991-1000.
Putri, C. H., Janica, L., Jannah, M., Ariana, P. P., Tansy, R. V., & Wardhana, Y. R. (2017). Utilization of dragon fruit peel waste as microbial growth media. Proceedings of the 10th CISAK, Daejeon, Korea, 91-95.
Verma, N., Kumar, V., & Bansal, M. C. (2018). Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. Biocatalysis and agricultural biotechnology, 16, 483-492.
Kadam, A., Patil, S., Sonne, M., Dahigaonkar, K., Oberoi, J. K., & Jadhav, P. (2017). Cost effective alternative fungal culture media formulation using fruit and vegetables waste. Int. J. Curr. Res, 9, 56887-56893.
Kumar, S. (2012). Textbook of microbiology. JP Medical Ltd.
Power, D. A., & Johnson, J. A. (2009). Difco™ & BBL™ manual. Manual of Microbiological Culture Media, 359-60.
Atlas, R. M. (2010). Handbook of microbiological media. CRC press.
Latgé, J. P. (1975). Croissance e t sporulation de 6 espèces d'entomophthorales 1. Influence de la nutrition, carbonée. Entomophaga, 20, 201-207.
Pasteur, L. (1922). In Vallery-Radot, P. Memoire sur la fermentation appelCe lactique. Oeuvres de Pasteur, 2, 3.
Cook, L. E., Gang, S. S., Ihlan, A., Maune, M., Tanner, R. S., McInerney, M. J., & Gunsalus, R. P. (2018). Genome sequence of Acetomicrobium hydrogeniformans OS1. Genome announcements, 6(26), e00581-18.
Yurkov, V. V., & Beatty, J. T. (1998). Aerobic anoxygenic phototrophic bacteria. Microbiology and Molecular Biology Reviews, 62(3), 695-724.
van der Horst, M. A., Key, J., & Hellingwerf, K. J. (2007). Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends in microbiology, 15(12), 554-562.