Enriched Ameliorant and Readily Available Nutrients for Enhancing the Rhizobacterial Population, Nutrient Uptake, and Yield of Pepper Grown in Inceptisol Soil Media: A Review

Authors

  • Abet Nego Ginting Program Bachelor of Agrotechnology, Faculty of Agriculture, Universitas Padjadjaran. Bandung Sumedang Street KM 21 Jatinangor, Sumedang 45363, Indonesia
  • Nicky Oktav Fauziah Postgraduate Program Doctoral of Soil Science, Universitas Padjadjaran, Bandung Sumedang Street KM 21 Jatinangor, Sumedang 45363, Indonesia
  • Hanif Fakhrurroja National Research and Inovation Agency of Republic Indonesia, Bandung, West Java, Indonesia
  • Harry Bangkit National Research and Inovation Agency of Republic Indonesia, Bandung, West Java, Indonesia
  • Betty Natalie Fitriatin Department of Soil Science and Land Reosources, Faculty of Agriculture, Universitas Padjadjaran. Bandung Sumedang Street Km 21 Jatinangor, Sumedang 45363, Indonesia
  • Tien Turmuktini Faculty of Agriculture, Universitas Winaya Mukti, Tanjungsari Street, Sumedang 45362, Indonesia
  • Diyan Herdiyantoro Department of Soil Science and Land Reosources, Faculty of Agriculture, Universitas Padjadjaran. Bandung Sumedang Street Km 21 Jatinangor, Sumedang 45363, Indonesia
  • Tualar Simarmata Department of Soil Science and Land Reosources, Faculty of Agriculture, Universitas Padjadjaran. Bandung Sumedang Street Km 21 Jatinangor, Sumedang 45363, Indonesia

DOI:

https://doi.org/10.55677/ijlsar/V03I7Y2024-04

Keywords:

pepper productivity, plant nutrition, soil amendment

Abstract

Soil fertility affects the diversity and quality of soil microbes in decomposing organic matter and recycling nutrients. Inceptisols soil is young soil that is starting to develop with its soil fertility status. Management is needed to maximize sustainable soil quality and high plant productivity. Chili plants are widely cultivated but suboptimal soil conditions can inhibit plant growth. Ameliorant materials can be organic or inorganic materials. Ameliorant provides benefits in reducing damage, maintaining nutrients in the soil, increasing the organic nutrient content in the soil and helping microbial symbiosis. The efficiency of nutrient use depends on the plant's ability to absorb nutrients. The effectiveness of nutrient management strategies by combining inorganic and organic nutrient inputs, it is proven that balanced nutrient management can increase plant growth and productivity. Ameliorant can come from organic and inorganic materials which can increase soil fertility from biological and chemical properties, the productivity of chili plants. The materials used as ameliorant are biochar, biosolids, animal waste, microalgae. When cultivating chilies in inceptisol media, it is necessary to apply ameliorant combined with effective essential nutrients, in order to increase chili productivity and contribute to agricultural agriculture.

References

Agbede, T. M., & Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7(April 2021), 100051. https://doi.org/10.1016/j.resenv.2022.100051

Ahn, C. H., Lee, S., Park, J. R., Ahn, H. K., Yoon, S., Nam, K., & Joo, J. C. (2022). Physicochemical and fertility characteristics of microalgal soil ameliorants using harvested cyanobacterial microalgal sludge from a freshwater ecosystem, Republic of Korea. Heliyon, 8(6), e09700. https://doi.org/10.1016/j.heliyon.2022.e09700

Alneyadi, K. S. S., Almheiri, M. S. B., Tzortzakis, N., Di Gioia, F., & Ahmed, Z. F. R. (2024). Organic-based nutrient solutions for sustainable vegetable production in a zero-runoff soilless growing system. Journal of Agriculture and Food Research, 15(February), 101035. https://doi.org/10.1016/j.jafr.2024.101035

Begam, A., Pramanick, M., Dutta, S., Paramanik, B., Dutta, G., Patra, P. S., Kundu, A., & Biswas, A. (2024). Inter-cropping patterns and nutrient management effects on maize growth, yield and quality. Field Crops Research, 310(March), 109363. https://doi.org/10.1016/j.fcr.2024.109363

Chen, Y., Jiang, Z., Ou, J., Liu, F., Cai, G., Tan, K., & Wang, X. (2024). Nitrogen substitution practice improves soil quality of red soil (Ultisols) in South China by affecting soil properties and microbial community composition. Soil and Tillage Research, 240(April 2023), 106089. https://doi.org/10.1016/j.still.2024.106089

Ezeokoli, O. T., Badenhorst, J., Raimi, A., Dabrowski, J., Scholtz, C. H., & Adeleke, R. A. (2023). Effect of dung and dung beetle application on topsoil fungal assemblage of a post-coal mining reclamation land: Towards soil health improvement. Applied Soil Ecology, 185(December 2022), 104804. https://doi.org/10.1016/j.apsoil.2023.104804

Fatima, I., Fatima, A., Shah, M. A., Farooq, M. A., Ahmad, I. A., Ejaz, I., Adjibolosoo, D., Laila, U., Rasheed, M. A., Shahid, A. I., Tariq, A., & Hani, U. (2023). Individual and synergistic effects of different fertilizers and gibberellin on growth and morphology of chili seedlings. Acta Ecologica Sinica, 44(2), 275–281. https://doi.org/10.1016/j.chnaes.2023.06.003

Gogoi, B., Das, R., Nath, D. J., Dutta, S., Borah, M., Talukdar, L., Patgiri, D. K., Pathak, K., Valente, D., Petrosillo, I., & Borah, N. (2024). Long-term management of rice agroecosystem towards climate change mitigation. Ecological Indicators, 160(February), 111876. https://doi.org/10.1016/j.ecolind.2024.111876

Hafez, M., Abdallah, A. M., Mohamed, A. E., & Rashad, M. (2022). Influence of environmental-friendly bio-organic ameliorants on abiotic stress to sustainable agriculture in arid regions: A long term greenhouse study in northwestern Egypt. Journal of King Saud University - Science, 34(6), 102212. https://doi.org/10.1016/j.jksus.2022.102212

Jose, S., Malla, M. A., Renuka, N., Bux, F., & Kumari, S. (2024). Cyanobacteria-green microalgae consortia enhance soil fertility and plant growth by shaping the native soil microbiome of Capsicum annuum. Rhizosphere, 30(March), 100892. https://doi.org/10.1016/j.rhisph.2024.100892

Kashyap, D., de Vries, M., Pronk, A., & Adiyoga, W. (2023). Environmental impact assessment of vegetable production in West Java, Indonesia. Science of the Total Environment, 864(November 2022), 160999. https://doi.org/10.1016/j.scitotenv.2022.160999

Kebede, G., Worku, W., Jifar, H., & Feyissa, F. (2024). Effects of fertilizer levels and varieties on fodder yield productivity, nutrient use efficiency, and profitability of oat (Avena sativa L.) in the central highlands of Ethiopia. Journal of Agriculture and Food Research, 16(December 2023), 101161. https://doi.org/10.1016/j.jafr.2024.101161

Khoso, M. A., Wagan, S., Alam, I., Hussain, A., Ali, Q., Saha, S., Poudel, T. R., Manghwar, H., & Liu, F. (2024). Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, 11(December 2023), 100341. https://doi.org/10.1016/j.stress.2023.100341

Levett, A., Gagen, E. J., Levett, I., & Erskine, P. D. (2023). Integrating microalgae production into mine closure plans. Journal of Environmental Management, 337(December 2022), 117736. https://doi.org/10.1016/j.jenvman.2023.117736

Li, H., Yang, L., Mao, Q., Zhou, H., Guo, P., Agathokleous, E., & Wang, S. (2023). Modified biochar enhances soil fertility and nutrient uptake and yield of rice in mercury-contaminated soil. Environmental Technology and Innovation, 32(November), 103435. https://doi.org/10.1016/j.eti.2023.103435

Li, Z., Fang, F., Wu, L., Gao, F., Li, M., Li, B., Wu, K., Hu, X., Wang, S., Wei, Z., Chen, Q., Zhang, M., & Liu, Z. (2024). The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.01.031

Liu, C., Chen, T., Zhang, F., Han, H., Yi, B., & Chi, D. (2024). Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation. Agricultural Water Management, 300(January), 108908. https://doi.org/10.1016/j.agwat.2024.108908

Lubis, N., & Sebayang, N. U. W. (2024). Effect doses level of vermigot fertilizer on the chemical and biological characteristics of Inceptisol and Maize (Zea mays L.) production. BIO Web of Conferences, 99, 1–8. https://doi.org/10.1051/bioconf/20249905012

Majeed M. Ali Jaaf, S., Li, Y., Günal, E., Ali El Enshasy, H., Salmen, S. H., & Sürücü, A. (2022). The impact of corncob biochar and poultry litter on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi Journal of Biological Sciences, 29(4), 2998–3005. https://doi.org/10.1016/j.sjbs.2022.01.037

Nejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16(February), 101060. https://doi.org/10.1016/j.jafr.2024.101060

Niemmanee, T., Kaveeta, R., & Potchanasin, C. (2015). Assessing the Economic, Social, and Environmental Condition for the Sustainable Agricultural System Planning in Ban Phaeo District, Samut Sakhonn Province, Thailand. Procedia - Social and Behavioral Sciences, 197(February), 2554–2560. https://doi.org/10.1016/j.sbspro.2015.07.621

Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B., & Cambardella, C. A. (2020). Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma, 369(December 2019), 114335. https://doi.org/10.1016/j.geoderma.2020.114335

Ou, X., Liu, D., Liu, A., Liu, H., Chen, R., & Zhang, Y. (2023). Effects of nutrient solution management modes on fruit production and quality of tomatoes grown in extremely root restriction. Scientia Horticulturae, 321(August). https://doi.org/10.1016/j.scienta.2023.112366

Pathak, D., Lone, R., Nazim, N., Alaklabi, A., Khan, S., & Koul, K. K. (2022). Plant growth promoting rhizobacterial diversity in potato grown soil in the Gwalior region of India. Biotechnology Reports, 33(February), e00713. https://doi.org/10.1016/j.btre.2022.e00713

Phares, C. A., Amoakwah, E., Danquah, A., Afrifa, A., Beyaw, L. R., & Frimpong, K. A. (2022). Biochar and NPK fertilizer co-applied with plant growth promoting bacteria (PGPB) enhanced maize grain yield and nutrient use efficiency of inorganic fertilizer. Journal of Agriculture and Food Research, 10(May), 100434. https://doi.org/10.1016/j.jafr.2022.100434

Ran, T., Li, J., Liao, H., Zhao, Y., Yang, G., & Long, J. (2023). Effects of biochar amendment on bacterial communities and their function predictions in a microplastic-contaminated Capsicum annuum L. soil. Environmental Technology and Innovation, 31, 103174. https://doi.org/10.1016/j.eti.2023.103174

Ruseva, A., Minnikova, T., Kolesnikov, S., Trufanov, D., Minin, N., Revina, S., & Gayvoronsky, V. (2024). Assessment of the ecological state of haplic chernozem contaminated by oil, fuel oil and gasoline after remediation. Petroleum Research, 9(1), 155–164. https://doi.org/10.1016/j.ptlrs.2023.03.002

Saha, S., & Bharadwaj, A. (2023). A step towards smart agriculture using metallic nanostructures. Plant Stress, 10(September), 100216. https://doi.org/10.1016/j.stress.2023.100216

Sharma, P., Abrol, V., Sharma, V., Chaddha, S., Srinivasa Rao, C., Ganie, A. Q., Ingo Hefft, D., El-Sheikh, M. A., & Mansoor, S. (2021). Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield and monetary returns in inceptisol subtropics. Saudi Journal of Biological Sciences, 28(12), 7539–7549. https://doi.org/10.1016/j.sjbs.2021.09.043

Silva-Leal, J. A., Pérez-Vidal, A., & Torres-Lozada, P. (2021). Effect of biosolids on the nitrogen and phosphorus contents of soil used for sugarcane cultivation. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06360

Subedi, P., Bhattarai, P., Lamichhane, B., Khanal, A., & Shrestha, J. (2023). Effect of different levels of nitrogen and charcoal on growth and yield traits of chili (Capsicum annuum L.). Heliyon, 9(2), 0–7. https://doi.org/10.1016/j.heliyon.2023.e13353

Widuri, L. I., Lakitan, B., Sakagami, J., Yabuta, S., Kartika, K., & Siaga, E. (2020). Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Annals of Agricultural Sciences, 65(2), 149–158. https://doi.org/10.1016/j.aoas.2020.09.002

Yang, X., Zhang, P., Wei, Z., Liu, J., Hu, X., & Liu, F. (2022). Effects of elevated CO2 and nitrogen supply on leaf gas exchange, plant water relations and nutrient uptake of tomato plants exposed to progressive soil drying. Scientia Horticulturae, 292(February 2021), 110643. https://doi.org/10.1016/j.scienta.2021.110643

Zarpelon, T. G., Guimarães, L. M. da S., Alfenas-Zerbini, P., Lopes, E. S., Mafia, R. G., & Alfenas, A. C. (2016). Rhizobacterial characterization for quality control of eucalyptus biogrowth promoter products. Brazilian Journal of Microbiology, 47(4), 973–979. https://doi.org/10.1016/j.bjm.2016.07.013

Zhang, T., Jian, Q., Yao, X., Guan, L., Li, L., Liu, F., Zhang, C., Li, D., Tang, H., & Lu, L. (2024). Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon, 10(10), e31553. https://doi.org/10.1016/j.heliyon.2024.e31553

Downloads

Published

2024-07-04

How to Cite

Ginting, A. N. ., Fauziah, N. O., Fakhrurroja, H. ., Bangkit, H., Fitriatin, B. N., Turmuktini, T., … Simarmata, T. (2024). Enriched Ameliorant and Readily Available Nutrients for Enhancing the Rhizobacterial Population, Nutrient Uptake, and Yield of Pepper Grown in Inceptisol Soil Media: A Review. International Journal of Life Science and Agriculture Research , 3(07), 526–530. https://doi.org/10.55677/ijlsar/V03I7Y2024-04

Similar Articles

<< < 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)