The Potential Plant Growth-Promoting Bacteria (PGPB) Consortia to Suppress the Growth of Xanthomonas oryzae pv. oryzae in vitro

Authors

  • Haliatur Rahma Department of Plant Protection, Faculty of Agriculture, Universitas Andalas. Jl. Unand, Limau Manis Padang 25163, West Sumatra. Indonesia.
  • Zurai Resti Department of Plant Protection, Faculty of Agriculture, Universitas Andalas. Jl. Unand, Limau Manis Padang 25163, West Sumatra. Indonesia.
  • Yusniwati Department of Agrotecnology, Faculty of Agriculture, Universitas Andalas. Jl. Unand, Limau Manis Padang 25163, West Sumatra. Indonesia.

DOI:

https://doi.org/10.55677/ijlsar/V03I9Y2024-06

Keywords:

antibiosis, leaf blight, HCN, protease enzyme, siderophore.

Abstract

Bacterial leaf blight (BLB) is one of the main diseases in rice plants caused by the pathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo). Plant Growth-Promoting Bacteria (PGBP) are a group of beneficial microorganisms that interact with plants. The interaction of PGPB with plants can act as a biocontrol agent against plant pathogens.This study aims to obtain a PGPB consortium that can potentially suppress the growth of Xanthomonas oryzae pv. oryzae in vitro. The PGPB isolates used were Stenotrophomonas pavanii KJKB 54, Stenotrophomona maltophilia LMTSA 54, Stenotrophomonas maltophilia LMB35, Bacillus cerereus AJ34, Serratia marcescens AR1, Ochrobactrum intermedium LMB1, Alcaligenes faecalis AJ14, and bacterial isolate Bacillus thuringiensis LmD13. Seven PGPB consortia were obtained which will be tested for their ability to suppress the growth of Xoo using an experimental method with a completely randomized design consisting of 8 treatments and 4 replications. The antagonist test of PGPB consortia against Xoo bacteria was carried out using the dual culture method. The result showed the consortium of Stenotrophomonas pavanii KJKB54+ Stenotrophomonas maltophilia LMTSA54+ Bacillus cereus AJ34+ Serratia marsescens AR1 cell consortium and supernatant had the highest potential to suppress Xoo. The antagonistic activities of the consortium were 58% and 52%. This consortium shows the ability to produce of protease enzyme, HCN and siderophores and can be developed as a biological agent against Xanthomonas oryzae pv. oryzae.

 

References

Abd El-Rahman A.F., Shaheen H.A, Abd El-Aziz R.M., & Ibrahim D.S.S. 2019. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egyptian Journal of Biological Pest Control.29 (41):1-11. https://doi.org/10.1186/s41938-019-0143-7

Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., & Mahillon J. 2019. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 10:302. doi: 10.3389/fmicb.2019.00302

Danquah A.C., Minkah P.A.B., Junior I.O.D.,Amankwah K.B., Somuah S.O.2022. ntimicrobial Compounds from Microorganisms. Antibiotics 2022, 11, 285. https://doi.org/10.3390/ antibiotics11030285

Denizci, A.A, Kazan, D., Abeln, E.C., Erarslan. A. 2004. Newly isolated Bacillus clausii GMBAE 42: an alkaline protease producer capable to grow under higly alkaline conditions. J Appl Microbiol. 2004;96(2):320-327. doi: 10.1046/j.1365-2672.2003.02153.x pmid: 14723693

Duncker, K.E., Holmes, Z.A., & You, L. 2021. Engineered microbial consortia: strategies and applications. Microbial Cell Factories. 20:211. https://doi.org/10.1186/s12934-021-01699-9

Hata, E.M., Yusof, M.T., & Zulperi, D. 2021. Induction of Systemic Resistance against Bacterial Leaf Streak Disease and Growth Promotion in Rice Plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8. Plant Pathol. J. 37(2) : 173-181. https://doi.org/10.5423/PPJ.OA.05.2020.0083

Ngalimat, M.S.; Mohd Hata, E.; Zulperi, D.; Ismail, S.I.; Ismail, M.R.; Mohd Zainudin, N.A.I.; Saidi, N.B.; Yusof, M.T. Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms 2021, 9, 682. https://doi.org/10.3390/ microorganisms9040682

Monjezi, N., Yaghoubian, I., & Smith, D.L. 2023. Cell-free supernatant of Devosia sp. (strain SL43) mitigates the adverse effects of salt stress on soybean (Glycine max L.) seed vigor index. Front. Plant Sci. 14:1071346. doi: 10.3389/fpls.2023.1071346

Montaño, F.P., Guerrero, I.J., Matamoros, R.C.S., Baena, F.J.L., Ollero, F.J., Rodríguez-Carvajal, M.A., Bellogín, R.A., Espuny, M.R. 2013. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res. Microbiol. 164, 749–760.

Morales Moreira, Z.P., Bobbi, L., Helgason, & Germida, J.J. 2020. Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes. Can. J. Microbiol. 67: 161–173 (2021) dx.doi.org/10.1139/cjm-2020-0306

Katsenios, N., Andreou, V., Sparangis, P., Djordjevic, N., et al. 2022. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Scientific Reports. 12:11598. | https://doi.org/10.1038/s41598-022-16044-2

Rahma, H., Nurbailis., & Kristina, N. 2019. Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. oryzae. Biodiversitas. 20(12): 3654-3661.

Santoyo, G., Guzmán-Guzmán, P., Parra-Cota, F.I., Santos-Villalobos, S.D.l., Orozco-Mosqueda, M.d.C., Glick, B.R. 2021.Plant Growth Stimulation by Microbial Consortia. Agronomy. 11, 219. https://doi.org/10.3390/ agronomy11020219

Sarma, B.K., Yadav, S.K., Singh, S., Singh, H.B. 2015. Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy. Soil Biol. Biochem. 2015, 87, 25–33.

Sopialena., Suyadi., Jannah, R., & Tantiani, D. Control of bacterial leaf blight disease in several varieties of rice plants (Oryza sativa L.) by using bacteria of Paenibacilus polymyxa Mac. IOP Conf. Series: Earth and Environmental Science 800 (2021) 012026 IOP Publishing doi:10.1088/1755-1315/800/1/012026

Sultana S., Alam S., & Karim M.M.Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research. 4 (2021).100150.https://doi.org/10.1016/j.jafr.2021.100150

Suparyono., Sudir., & Suprihanto. 2016. Pathotype Profile of Xanthomonas oryzae pv. oryzae Isolates from the Rice Ecosystem in Java. Indonesian Journal of Agricultural Science Xanthomonas oryzae pv. oryzae.5(2) 2004: 63-69. DOI: 10.21082/ijas.v5n2.2004.p63-69

Wang, G., Ren, Y., Bai, X., Su, Y., Han, J. 2022. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants. 11, 3200. https:// doi.org/10.3390/plants11233200

Yang F., Zhang J., Zhang H., Ji G., Zeng L., Li Y., Yu C., Fernando W.G.D., & Chen W. 2020. Bacterial Blight Induced Shifts in Endophytic Microbiome of Rice Leaves and the Enrichment of Specific Bacterial Strains With Pathogen Antagonism. Front. Plant Sci. 11:963. doi: 10.3389/fpls.2020.00963

Vuolo, F., Novello, G., Bona, E., Gorrasi, S., Gamalero, E. 2022. Impact of Plant-Beneficial Bacterial Inocula on the Resident Bacteriome: Current Knowledge and Future Perspectives. Microorganisms. 10, 2462. https://doi.org/10.3390/ microorganisms10122462

Downloads

Published

2024-09-20

How to Cite

Rahma, H. ., Resti, Z. ., & Yusniwati. (2024). The Potential Plant Growth-Promoting Bacteria (PGPB) Consortia to Suppress the Growth of Xanthomonas oryzae pv. oryzae in vitro. International Journal of Life Science and Agriculture Research , 3(9), 768–773. https://doi.org/10.55677/ijlsar/V03I9Y2024-06

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.