Groundwater potential zones for Agriculture purpose by Using Remote Sensing, GIS and AHP techniques in Northwestern coastal basins at Ras El-Khima, Marsa Matrouh Governorate, Egypt.

Authors

  • Mohamed Samir Mohamed Abou-Al fotoh Remote Sensing & GIS Unit ; Soils, Water and Environmental Research Institute ; ARC, Giza, Egypt
  • Mamdouh Khalil Abd El-Gaffar Remote Sensing & GIS Unit ; Soils, Water and Environmental Research Institute ; ARC, Giza, Egypt
  • Esmail Hussien Ewida Remote Sensing & GIS Unit ; Soils, Water and Environmental Research Institute ; ARC, Giza, Egypt

DOI:

https://doi.org/10.55677/ijlsar/V04I02Y2025-10

Keywords:

Groundwater Potential Zones, Northwestern Coastal basins, Egypt.

Abstract

The primary objective of this study is to demarcate and evaluate groundwater potential zones (GWPZs) within semi-arid basins employing a combination of Remote Sensing (RS), Geographic Information System (GIS), and Analytic Hierarchy Process (AHP). A total of eight thematic layers (including geology, geomorphology, lineament density, rainfall land use and land cover, drainage density, soil type and slope) were developed in raster format. Following the AHP methodology and rank assignment, these thematic layers were fused using the raster calculator to generate the GWPZs map. The allocation of weights to each category in all thematic maps was based on their attributes and water potential capacity using the AHP methodology. The examination disclosed that: 50.13% of the studied basins are characterized by low potential, 43.81% are identified as having moderate potential, and 6.06% are recognized as demonstrating high potential.

References

1. Makonyo, M and M. M. Msabi (2021). Identification of groundwater potential recharge zones using GIS-based mul-ti-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sens. Appl. Soc. Environ., 23, 100544.

2. Ifediegwu, S. I. (2022). Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State, Nigeria. Appl. Water Sci., 12, 10.

3. Ghosh, A., P. P. Adhikary, B. Bera, G.S. Bhunia and P. K. Shit (2022). Assessment of groundwater potential zone using MCDA and AHP techniques: Case study from a tropical river basin of India. Appl. Water Sci., 12, 37.

4. Chatterjee, S and S. Dutta (2022). Assessment of groundwater potential zone for sustainable water resource management in south-western part of Birbhum District, West Bengal. Appl. Water Sci., 12, 40.

5. Arulbalaji. P, D. Padmalal and K. Sreelash (2019). GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India. Scientific Reports., 9:2082 https://doi.org/10.1038/s41598-019-38567-x.

6. Masoud, A. M, Q. B. Pham, A. K. Alezabawy and S. A. Abu El-Magd. Efficiency of Geospatial Technology and Mul-ti-Criteria Decision Analysis for Groundwater Potential Mapping in a Semi-Arid Region. Water 2022, 14, 882.

7. Sahu, U, V. Wagh, S. Mukate, A. Kadam and S. Patil (2022). Applications of geospatial analysis and analytical hierarchy process to identify the groundwater recharge potential zones and suitable recharge structures in the Ajani-Jhiri watershed of north Maharashtra, India. Groundw. Sustain. Dev., 17, 100733.

8. Suliman, M, K. Samiullah and M. Ali (2022). Identification of potential groundwater recharge sitein a semi-arid region of Pakistan using Saaty’s analytical hierarchical process (AHP). Geomat. Environ. Eng., 16, 53–70.

9. Dakhlalla, A. O, P. B. Parajuli, Y. Ouyang and D. W. Schmitz (2016). Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed. Agric. Water Manag.., 163, 332–343.

10. Scanlon, B. R, K. E. Keese, A. L. Flint, L. E. Flint, C. B. Gaye, W. M. Edmunds and I. Simmers. (2006). Global synthesis of groundwater recharge in semi-arid and arid regions. Hydrol. Process., 20, 3335–3370.

11. Kumar M., Singh, S.K., Kundu, A., Tyagi, K., Menon, J., Frederick, A., Raj, A., Lal, D (2022). GIS-based multi-criteria approach to delineate groundwater prospect zone and its sensitivity analysis. Appl. Water Sci., 12, 71.

12. Asgher, M.S., N. Kumar M. Kumari, M. Ahmad, L. Sharma and M. W. Naikoo (2022). Groundwater potential mapping of Tawi River basin of Jammu District, India, using geospatial techniques. Environ. Monit. Assess., 194, 240.

13. Dar I. A, K. Sankar and M. A. Dar (2010). Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environ. Monit. Assess., 173, 597–610.

14. Thapa R, S. Gupta, S. Guin and H. Kaur (2017). Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Appl. Water Sci., 7, 4117–4131.

15. Oh H. J., Y. S. Kim, J. K. Choi, E. Park and S. Lee (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol., 399, 158–172.

16. Adiat K. A. N., M. N. M. Nawawi and K. Abdullah (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool – a case of predicting potential zones of sustainable groundwater resources. J. Hydrol., 440, 75–89.

17. Russo T. A, A. T. Fisher and B. S. Lockwood (2015). Assessment of managed aquifer recharge site suitability using a GIS and modeling. Groundwater., 53, 389–400.

18. Chowdhury A, M. K. Jha, V. M. Chowdary and B.C. Mal (2009). Integrated remote sensing and GIS‐based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int. J. Remote Sens., 30, 231–250.

19. Al-Djazouli M. O, K. Elmorabiti, A. Rahimi, O. Amellah and O. A. M. Fadil (2021). Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: A case of Waddai, eastern Chad. Geo Journal, 86, 1881–1894.

20. Khan M. Y. A., M. El-Kashouty and F. Tian (2022). Mapping Groundwater Potential Zones Using Analytical Hierarchical Process and Multicriteria Evaluation in the Central Eastern Desert, Egypt. Water., 14, 1041.

21. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation, McGraw: New York, NY, USA, ISBN 978-0070543713.

22. Sajil- Kumar P.J., L. Elango and M. Schneider (2022). GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India. Sustainability., 14, 1830.

23. Dhar A, S. Sahoo and M. Sahoo (2015). Identification of groundwater potential zones considering water quality aspect. Environ. Earth Sci., 74, 5663–5675.

24. Saaty, T. L. (1986). Axiomatic foundation of the Analytic Hierarchy Process. Manag. Sci., , 32, 841–855.

25. Kumar A, B. Sah, A. Singh, Y. Deng, X. He, P. Kumar and R. A. Bansal (2017). Review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev., 69, 596–609.

26. Siva Kumar K, A. Shanmugasundaram, M. Jayaprakash, K. Prabakaran S. Muthusamy, A. Ramachandran, S. Venkatra-manan and S. Selvam (2021). Causes of heavy metal contamination in groundwater of Tuticorin industrial block, Tamil Nadu, India. Environ. Sci. Pollut. Res., 28, 18651–18666.

27. Prabakaran K, K. Siva Kumar and C. Aruna (2020). Use of GIS-AHP tools for potable groundwater potential zone inves-tigations-a case study in Vairavanpatti rural area, Tamil Nadu, India. Arab. J. Geosci., 13, 866.

28. Hilletofth P, M. Sequeira and A. Adlemo (2019). Three novel fuzzy logic concepts applied to reshoring decision-making. Expert Syst. Appl., 126, 133–143.

29. ERDAS "Earth Resources Data Analysis System", Inc., ERDAS Imagine version 2015, Field Guide, 4th ed., 2015. ERDAS, Inc., Atlanta, Georgia. USA

30. ESRI. Arc Map version 10.8 User Manual. ESRI, 380 New York Street, Redlands, California, USA., 2021.

31. CONCO. Geologic Map of Egypt. Egyptian General Authority for Petroleum (UNESCO Joint Map Project), 20 Sheets, Scale 1:500 000. Cairo, 1987

32. Burt Rebecca, Ed (2004). Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42, Version 4.0, USDA-NRCS, Lincoln, Nebraska.

33. Saaty, T. L. A (1997). Scaling method for priorities in hierarchical structures. J Math Psychol., 15:234–281. https://doi.org/10.1016/0022- 2496 (77) 90033-5.

34. Khadri, S. F. R, P. Chaitanya and M. Kanak (2013). Geomorphological investigation of WRV-1 Watershed management in Wardha district of Maharashtra India, using Remote sensing and Geographic Information System techniques, International Journal of Pure and Applied Research in Engineering and Technology., 1 (10).

35. Khadri, S. F. R and P. Chaitanya (2014). Hypsometric Analysis of The Mahesh River Basin in Akola and Buldhana Districts Using Remote Sensing & GIS Technology, International Journal of Golden Research Thoughts., I, 3 (9).

36. El-Bastwasy M. A (2008). The Use of Remote Sensing and GIS for Catchments Delineation in Northwestern Coast of Egypt: An Assessment of water Resources and Soil Potential., Egypt J. Remote Sensing Space Sci., 11: 3-16.

37. Said, R (1990). The Geology of Egypt, Balkema, Rotterdam. Geological Magazine., 128 (6): 676-677.

38. Hassan, S. S, L. I. Yehia, A. F. H. Said and S. Ezz El Deen (2017). Hydrology of Wadi El Sanab, El Qasr area, West Mersa Matrouh, Northwestern Coastal Zone-Egypt. IJISET:, (3) 171-191.

39. Hassouba, A (1995). Quaternary sediments from the coastal plain of Northwestern Egypt (from Alexandria to El Omayid). Carbonates and Evaporates., 10 (1): 8-44.

40. Rajesh. J, P. B. Chaitanya, K. A. Sunil, G. D. Sunil and S.G. Mukund (2021). Exploration of groundwater potential zones using analytical hierarchical process (AHP) approach in the Godavari River basin of Maharashtra in India. Applied Water Sci., 11:182. https://doi.org/10.1007/s13201-021-01518-x.

41. Waikar M. and A. Nilawar (2014). Identification of Groundwater Potential Zone using Remote Sensing and GIS Technique. Int. J. Innov. Res. Sci. Eng. Technol., 3, 12163–12174.

42. Zinck J, G. Metternicht, G. Bocco and H. Del Valle (2016). Geopedology. An Integration of Geomorphology and Pedology for Soil and Landscape Studies. Springer International Publishing AG Switzerland.

43. Yeh H. F., Y. S. Cheng, H. I. Lin and C. H. Lee. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res., 26, 33–43.

44. Biswas S, B. P. Mukhopadhyay and A. Bera. (2020). Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal. Environ. Earth Sci., 79 (12). doi: 10.1007/s12665-020-09053-9.

45. Prabhu M. V and S. Venkateswaran (2015). Delineation of Artificial Recharge Zones Using Geospatial Techniq Naduues In Sarabanga Sub Basin Cauvery River, Tamil. Aquatic Procedia. 2015, 4 (Icwrcoe), 1265–1274. https://doi.org/10.1016/j.aqpro.,02.165.

46. Patode R. S, C. B. Pande, M. B. Nagdeve, K. N. Moharir and R. M. Wankhade (2017). Planning of Conservation Measures for Watershed Management and Development by using Geospatial Technology – A Case study of Patur Watershed in Akola District of Maharashtra. Curr World Environ., 12(3):706–714.

47. Ni, C., S. Zhang, C. Liu, Y. Yan and Y. Li. (2016). Lineament Length and Density Analyses Based on the Segment Tracing Algorithm: A Case Study of the Gaosong Field in Gejiu Tin Mine, China. Math. Probl. Eng., 5392453.

48. Fitts, C. R. (2013). Hydrology and Geology. In Groundwater Science, Fitts, C.R., Ed., Elsevier: Scarborough, ME, USA, pp. 123–186. ISBN 978-0-12-384705-8.

49. Morbidelli R., C. Saltalippi, A. Flammini, M. Cifrodelli, C. Corradini and R. S. Govindaraju (2015). Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modeling. J. Hydrol., 523, 79–85.

50. Khadri, S. F. R and K. Moharir (2016). Characterization of aquifer parameter in basaltic hard Rock region through pumping test methods: a case study of Man River basin in Akola and Buldhana Districts Maharashtra India. Model Earth Syst En-viron., https://doi.org/10.1007/s40808-015-0047-9.

51. Sresto M. A, S. Siddika, M. N. Haque and M. Saroar (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in northwest region of Bangladesh. Environ. Chall., 5, 100214.

52. Kom, K. P, B. Gurugnanam and V. Sunitha (2022). Delineation of groundwater potential zones using GIS and AHP tech-niques in Coimbatore district, South India. Int. J. Energy Water Resour., 6, 1–25.

53. Kaliraj, S, N. Chandrasekar and N. S. Magesh (2014). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab. J. Geosci., 7, 1385–1401.

54. Zolekar R. B. and V. S. Bhagat (2015). Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Comput. Electron. Agric., 118, 300–321

55. Rejith R. G, S. Anirudhan and M. Sundararajan (2019). Delineation of groundwater potential zones in hard rock terrain using integrated remote sensing, GIS and MCDM techniques: A case study from vamanapuram river basin, Kerala, India. In GIS and Geostatistical Techniques for Groundwater Science, Elsevier: Amsterdam, The Netherlands, pp., 349–364. ISBN 9780128154137.

56. Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Math. Model., 9, 161–176.

57. Nagarajan M and S. Singh (2009). Assessment of Groundwater Potential Zones using GIS Technique. J Indian Soc Remote Sens., 37:69–77.

58. Magesh N. S, N. Chandrasekar and J. P. Soundranayagam (2011). Delineation of groundwater potential Zones in Theni district, Tamil Nadu, using remote sensing GIS and MIF techniques. Geosci Front., 3(2):189–196.

59. Pandian M, U. Rajasimman and J. Saravanavel (2014). Identification of Groundwater Potential Recharge Zones using WETSPASS Model in parts of Coimbatore & Tiruppur Districts in Tamil Nadu India. Int J Water Res., 2(1):27–32.

60. Arumugam M, P. Kulandaisamy, S. Karthikeyan, K. Thangaraj, V. Senapathi, S. Y. Chung, S. Muthuramalingam, M. Ra-jendran, S. Sugumaran and S. Manimuthu (2023). An Assessment of Geospatial Analysis Combined with AHP Techniques to Identify Groundwater Potential Zones in the Pudukkottai District, Tamil Nadu, India. Water., 15, 1101.https://doi.org/10.3390/w15061101.

Downloads

Published

2025-02-22

How to Cite

Groundwater potential zones for Agriculture purpose by Using Remote Sensing, GIS and AHP techniques in Northwestern coastal basins at Ras El-Khima, Marsa Matrouh Governorate, Egypt. (2025). International Journal of Life Science and Agriculture Research , 4(02), 122-139. https://doi.org/10.55677/ijlsar/V04I02Y2025-10

Similar Articles

1-10 of 39

You may also start an advanced similarity search for this article.