Evaluation of Soil Temperature, Water Productivity and Agronomic Performance of Potato (Solanum Tuberosum L.)-Legume Intercropping System in the Western Highlands of Cameroon
DOI:
https://doi.org/10.55677/ijlsar/V02I11Y2023-02Abstract
Intercropping is a farming practice involving two or more crop species, growing simultaneously in the same area and which could efficiently utilize natural resources. A two-year study was conducted during 2021 and 2022 in the western highlands of Cameroon to examine the impacts of potato-legume intercropped on soil water content (SWC), productivity and soil temperature(ST) in order to identify cropping systems (CS) that controls ST and water productivity (WP). A randomised complete block design with seven treatments: sole potato crop (T1), Mucuna (T2), lima bean (T3), cowpea (T4) and intercropping systems of Mucuna+potato (T5), lima bean+potato (T6) and cowpea+potato (T7) was used. CS has a significant effect (P<0.05) on ST with the lowest ST being obtained in T5 (19.50°C), T7 (19.66°C) and T6 (19.68°C) against 20.20°C in T1. SWC varied with CS (P<0.05) with T1 having the lowest SWC of 40% versus T5 (47.90%), T6 (44.42%) and T7 (42.76%). Water use increased significantly (P<0.05) with T1 (783.34mm) and decreased from T7 (783.32mm) to T5 (783.30mm). As for WP, T1 (2.96g.mm-1) recorded the lowest value and T5 (4.04g.mm-1) the highest. T5 had the highest tuber yield (29.60t.ha-1) and T1 the lowest (23.21t.ha-1). Legume grain yield and biomass were highest in T5 (2.10t.ha-1 and 6.78t.ha-1 respectively) compared to others intercropping systems. The intercropping systems obtained an overall LER and WER greater than 1 with the highest in T6 (6.20 and 2.63). Intercropping potato with Mucuna or lima bean reduces soil temperature while improving soil water productivity that enhances potato production.
References
Abbate. P. E.. Dardanelli. J. L.. Cantarero. M. G.. Maturano. M.. Melchiori. R. J. M.. & Suero. E. E. (s. d.). Climatic and Water Availability Effects on Water-Use Efficiency in Wheat. 11.
Arslan. A.. & Kurdali. F. (2004). Rainfed vetch-barley mixed cropping in the Syrian semi-arid conditions. Undefined. https://www.semanticscholar.org/paper/Rainfed-vetch-barley-mixed-cropping-in-the-Syrian-Arslan-Kurdali/645bf7e187815e342bf9fb9b3dba2d8a2fe695e2
Bai. W.. Sun. Z.. Zheng. J.. Du. G.. Feng. L.. Cai. Q.. Yang. N.. Feng. C.. Zhang. Z.. Evers. J. B.. van der Werf. W.. & Zhang. L. (2016). Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agricultural Water Management. 178. 281‑290. https://doi.org/10.1016/j.agwat.2016.10.007
Blomme. G.. Ntamwira. J.. & Ocimati. W. (s. d.). Mucuna pruriens. Crotalaria juncea. and chickpea (Cicer arietinum) have the potential for improving productivity of banana-based systems in Eastern Democratic Republic of Congo. Legume Science. n/a(n/a). https://doi.org/10.1002/leg3.145
Borowy. A. (2012). growth and yield of stake tomato under no-tillage cultivation using hairy vetch as a living mulch. 24.
Buckles. D. ; Triomphe. B. ; Sain. G.. 1998. Cover crop in hillside agriculture: farmer innovation with Mucuna. IDRC/CIMMYT 1998.
Chepkemoi Janeth1. . Dr. Onwonga Richard2. . Dr. George N. Karuku3. & and Dr. Vincent M. Kathumo4. (s. d.). Efficiency of Combined Tillage Practices. Cropping Systems and Organic Inputs on Soil Moisture Retention in Yatta Sub-County. Kenya. Journal of Agriculture and Environmental Sciences. 287‑298.
Cooper. P. J. M.. Dimes. J.. Rao. K. P. C.. Shapiro. B.. Shiferaw. B.. & Twomlow. S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa : An essential first step in adapting to future climate change? Agriculture. Ecosystems & Environment. 126(1‑2). 24‑35. https://doi.org/10.1016/j.agee.2008.01.007
Dahmardeh. M.. & Rigi. K. (2013). The Influence of Intercropping Maize (Zea mays L.) Green Gram (Vigna Radiata L.) on the Changes of Soil Temperature. Moisture and Nitrogen. International Journal of Ecosystem. 3(2). 13‑17.
Davies. W. J.. Wilkinson. S.. & Loveys. B. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytologist. 153(3). 449‑460. https://doi.org/10.1046/j.0028-646X.2001.00345.x
Elias, E.A., Cichota, R., Torraiani, H.H. and De Jong Van Lier, Q. (2004). Analytical soil temperature model: correction for temporal variation of daily amplitude. Soil Sci. Soc. of America J. 68(3): 784-788.
FAO. 2011. Grassland Index. A searchable catalogue of grass and forage legumes. FAO. Rome. Italy.
Fontem. D. A.. Olanya. O. M.. & Njualem. B. F. (2004). Reaction of Certain Solanaceous and Asteraceous Plant Species to Inoculation with Phytophthora infestans in Cameroon. Journal of Phytopathology. 152(6). 331‑336. https://doi.org/10.1111/j.1439-0434.2004.00850.x
Gitari. H. I.. Gachene. C. K. K.. Karanja. N. N.. Kamau. S.. Nyawade. S.. & Schulte-Geldermann. E. (2019). Potato-legume intercropping on a sloping terrain and its effects on soil physico-chemical properties. Plant and Soil. 438(1). 447‑460. https://doi.org/10.1007/s11104-019-04036-7
Hack et al. (1993) PDF Téléchargement Gratuit.. Consulté 2 octobre 2022. à l’adresse https://docplayer.fr/65189229-Pomme-de-terre-hack-et-al-1993.html
Hill. D.. Nelson. D.. Hammond. J.. & Bell. L. (2021). Morphophysiology of Potato (Solanum tuberosum) in Response to Drought Stress : Paving the Way Forward. Frontiers in Plant Science. 11. 597554. https://doi.org/10.3389/fpls.2020.597554
Hu. G.. Zhao. L.. Li. R.. Wu. X.. Wu. T.. Xie. C.. Zhu. X.. & Su. Y. (2019). Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma. 337. 893‑905. https://doi.org/10.1016/j.geoderma.2018.10.044
Jianhong Ren, Lizhen Zhang, Yu Duan, Jun Zhang, Jochem B. Evers, Yue Zhang, Zhicheng Su, Wopke van der Werf. (2018). Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research 0378-4290, https://doi.org/10.1016/j.fcr.2018.12.002.
Lobell. D.. Cassman. K.. & Field. C. (2009). Crop Yield Gaps : Their Importance. Magnitudes. and Causes. Annual Review of Environment and Resources. 34. 179‑204. https://doi.org/10.1146/annurev.environ.041008.093740
Lombardozzi. D. L.. Bonan. G. B.. Wieder. W.. Grandy. A. S.. Morris. C.. & Lawrence. D. L. (2018). Cover Crops May Cause Winter Warming in Snow-Covered Regions. Geophysical Research Letters. 45(18). 9889‑9897. https://doi.org/10.1029/2018GL079000
Mahapatra. S. C. (2011). Study of grass – legume intercropping system in terms of comprtition indices and monetary advantage index under acidic lateritic soil of India. American Journal of Experimental Agriculture. 1(1):1 -6.
Mao. L.. Zhang. L.. Li. W.. van der Werf. W.. Sun. J.. Spiertz. H.. & Li. L. (2012). Yield advantage and water saving in maize/pea intercrop. Field Crops Research. 138. 11‑20. https://doi.org/10.1016/j.fcr.2012.09.019
Mead. R.. & Willey. R. W. (1980). The Concept of a ‘Land Equivalent Ratio’ and Advantages in Yields from Intercropping. Experimental Agriculture. 16(3). 217‑228. https://doi.org/10.1017/S0014479700010978
Mengui. K. C.. Oh. S.. & Lee. S. H. (2019). The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision. Cameroon. Agriculture. 9(12). 259. https://doi.org/10.3390/agriculture9120259
Monfreda. C.. Ramankutty. N.. & Foley. J. A. (2008). Farming the planet : 2. Geographic distribution of crop areas. yields. physiological types. and net primary production in the year 2000. Global Biogeochemical Cycles. 22(1). https://doi.org/10.1029/2007GB002947
Ngome. A.. Mtei. K.. & Tata. P. (2012). Mucuna pruriens differentially affect maize yields in three soils of Kakamega District. International Journal of Biological and Chemical Sciences. 6(3). 941‑949. https://doi.org/10.4314/ijbcs.v6i3.3
Nwankwo. C.. & Ogagarue. D. (2012). An Investigation of Temperature Variation at Soil Depths in Parts of Southern Nigeria. American Journal of Environmental Engineering. 2(5). 142‑147. https://doi.org/10.5923/j.ajee.20120205.05
Nyawade. S. O.. Karanja. N. N.. Gachene. C. K. K.. Gitari. H. I.. Schulte-Geldermann. E.. & Parker. M. L. (2019). Intercropping Optimizes Soil Temperature and Increases Crop Water Productivity and Radiation Use Efficiency of Rainfed Potato. American Journal of Potato Research. 96(5). 457‑471. https://doi.org/10.1007/s12230-019-09737-4
Nyawade. S. O.. Karanja. N. N.. Gachene. C. K. K.. Schulte-Geldermann. E.. & Parker. M. (2018). Effect of potato hilling on soil temperature. soil moisture distribution and sediment yield on a sloping terrain. Soil and Tillage Research. 184. 24‑36. https://doi.org/10.1016/j.still.2018.06.008
Ogindo. H. O.. & Walker. S. (2005). Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa. Physics and Chemistry of the Earth. Parts A/B/C. 30(11‑16). 799‑808. https://doi.org/10.1016/j.pce.2005.08.023
Rezig. M.. Sahli. Ali.. Hachicha. M.. Ben Jeddi. Faycel.. & Harbaoui. Y. (2013). Potato (Solanum tuberosum L.) and Bean (Phaseolus vulgaris L.) in Sole Intercropping : Effects on Light Interception and Radiation Use Efficiency. Journal of Agricultural Science. 5(9). p65. https://doi.org/10.5539/jas.v5n9p65
Rykaczewska. K. (2015). The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. American Journal of Potato Research. 92(3). 339‑349. https://doi.org/10.1007/s12230-015-9436-x
Scott. D. F. (2000). Soil wettability in forested catchments in South Africa; as measured by different methods and as affected by vegetation cover and soil characteristics. Journal of Hydrology. 231‑232. 87‑104. https://doi.org/10.1016/S0022-1694(00)00186-4
Sharaiha R.K.. Hadidi N.A.. 2008 - Micro Environmental Effects on Bean and Potato Yields Grown Under Intercropping System. Lucrări - Ştiinţifice. Editura Ion Ionescu de la Brad. Iasi. Vol. 51: 209-219.
Shimelis. H.. & Melis. R. (2014). Potato Production in Kenya : Farming Systems and Production Constraints. The Journal of Agricultural Science. 5. 182‑197. https://doi.org/10.5539/jas.v5n5p182
Steduto. P.. Raes. D.. Hsiao. T. C.. Fereres. E.. Heng. L.. Izzi. G.. & Hoogeveen. J. (s. d.). AquaCrop : A new model for crop prediction under water deficit conditions. 80. 9.
Tankou. C. M.. Beyegue. H. D.. Kouam. E. B.. Essam. J. V. L. M.. & Ngouenet. A. (2019). Responses of Potato (Solanum tuberosum L.) Varieties to Green Manure. International Journal of Agricultural Research. 15(1). 41‑47. https://doi.org/10.3923/ijar.2020.41.47
Thornton. F. C.. & Valente. R. J. (1996). Soil Emissions of Nitric Oxide and Nitrous Oxide from No-till Corn. Soil Science Society of America Journal. 60(4). 1127‑1133. https://doi.org/10.2136/sssaj1996.03615995006000040024x
Tchapga, Franck Junior Ngandjui, Chotangui, Asafor Henry, Fouegag, Maryline Temgoua and Mubeteneh, Tankou Christopher. "Effects of potato (Solanum tuberosum L.)–Mucuna pruriens intercropping pattern on the agronomic performances of potato and the soil physicochemical properties of the western highlands of Cameroon" Open Agriculture, vol. 8, no. 1, 2023, pp. 20220142. https://doi.org/10.1515/opag-2022-0142
Valdez. F. R.. Harrison. J. H.. Deetz. D. A.. & Fransen. S. C. (1988). In Vivo Digestibility of Corn and Sunflower Intercropped as a Silage Crop. Journal of Dairy Science. 71(7). 1860‑1867. https://doi.org/10.3168/jds.S0022-0302(88)79755-6
Wilson Dogbe, JO Fening, SKA Danso. (2002). Use of cowpea and Mucuna as prelimunaries to rainfed lowland rice in the Guinea savanna zone of Ghana. Tropical Science 42 (4), 157-161, 2002
Xie, K.Y., Wang, X.X., Zhang, R.F., Gong, X.F., Zhang, S.B., Mares, V., Gavilan, C., Posadas, A., Quiroz, R., 2012. Effect of partial root-zone drying on potato water utilization on semi-arid conditions in China. Chin. Potato J. 26 (1), 5–10 (in Chinese with English abstract).
Zin El-Abedin. T. K.. Mattar. M. A.. Alazba. A. A.. & Al-Ghobari. H. M. (2017). Comparative effects of two water-saving irrigation techniques on soil water status. yield. and water use efficiency in potato. Scientia Horticulturae. 225. 525‑532. https://doi.org/10.1016/j.scienta.2017.07.044