Metabolite Profile of Moringa Leaves (Moringa oleifera Lam.) from Several Regions in South Sumatra, Indonesia

Authors

  • Juswardi Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, South Sumatra, Indonesia.
  • Kintan Putriani Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, South Sumatra, Indonesia.
  • Harmida Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, South Sumatra, Indonesia.

DOI:

https://doi.org/10.55677/ijlsar/V02I06Y2023-08

Keywords:

Altitude, GC-MS, Metabolite profile, Moringa oleifera Lam., Bio-activity

Abstract

Moringa (Moringa oleifera Lam.) is a medicinal plant which is recognized as having many health benefits and has been widely used as a herbal medicine to treat certain diseases. To make an ingredient into herbal medicine, standardization of testing is required, because the chemical composition of a plant is not always the same. The growth of Moringa in South Sumatra is spread with varying altitudes, ranging from low, medium and high altitudes. Not much is known about the profile of metabolites of Moringa leaves based on the altitude where they grow. The altitude factor is one of the abiotic factors that can affect plant composition. The purpose of this study is to determine the metabolite profile and pharmacological activity of Moringa leaf metabolites based on different growing heights using a non-target metabolomics analysis approach using the GC-MS instrument. Sampling locations were determined using a stratified purposive sampling method based on the height where they grow. It is known that Moringa leaves from Bangun Rejo Village (795 masl) and Masam Bulau Village (570 masl) showed 29 types of metabolites, while Tebing Gerinting Village, Ogan Ilir (35 masl) showed 27 types of metabolites. Each Moringa leaf growing at an altitude of 35 masl showed dominant metabolites Palmitic acid methyl ester and Linolenic acid methyl ester, a height of 570 masl with Linolenic acid methyl ester and Oleic acid methyl ester compounds and a height of 795 masl with Palmitic acid methyl ester compounds and Oleic acid methyl ester, which has bio-activity as an antioxidant, antiandrogenic, antiproliferative, antieczemic, antihistamine, antibacterial, antifungal, hypocholesteromiic and antitumor.

References

Abdel-Hady, H. 2018. GC-MS Analysis, Antioxidant and Cytotoxic Activities of Mentha spicata. European Journal of Medicinal Plants. 26(1): 1-12. https://doi.org/10.9734/EJMP/2018/45751

Awa, E.P., Ibrahim, S. and Ameh, D.A.2012. GC/MS Analysis and Antimicrobial Activity of Diethyl Ether Fraction of Methanolic Extract from the stem bark of Annona senegalensis Pers. Int J Pharm Sci Res. 3(11); 4213-4218. : https://doi.org/10.13040/IJPSR.0975-8232.3(11).4213-18

Britha, S., Rajesh, S., Renuka, R., Santhanakrishnan, VP. And Gnanam, R. 2017. Phytochemical analysis and bioactivity prediction of compounds in methanolic extract of Curculigo orchioides Gaertn. Journal of Pharmacognosy and Phytochemistry. 6(4): 192-197. https://www.phytojournal.com/archives/2017/vol6issue4/PartC/6-3-122-574.pdf

Carvalho, A.M.S., Heimfarth, L., Pereira, E.W., Oliveira, F.S., Menezes, I.R., Coutinho, H., Picot, L., Antoniolli, A., Quintans, J., and Quintans-Junior, L. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Antiinflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF α and IL 6. Natural Products. 83(4): 1107-1117. https://doi.org/10.1021/acs.jnatprod.9b01116

Chandrasekaran, M., Senthilkuma, A. and Venkatesalu, V. 2011. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur Rev Med Pharmacol Sci. 15(7):775-80. https://www.europeanreview.org/wp/wp-content/uploads/995.pdf

De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD. 2007. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc. 2(4):778-91. https://doi.org/10.1038/nprot.2007.95

Eriyanti, Y., Nurulita, Y., Hendra, R., Yuharmen, Y., Syahri, J. and Zamro, A. 2011. Synthesizing Derivatives From Cyclopentanone Analogue Curcumin And Their Toxic, Antioxidant And Anti-Inflammatory Activities. Makara Sains.15(2): 117-123. https://doi.org/10.7454/mss.v15i2.1060

Holmes, J. and Twentyman, P. 1995. The Activity of Deoxyspergualin in Multidrug-Resistant Cells. Cancer Chemother Pharmacol. 36(6): 499-505. https://doi.org/10.1007/bf00685800

Kaushik, J.C., Sanjay, A., Tripathi, N.N., and Arya S. 2002. Antifungal Properties of Some Plant Extracts Against Damping Off Fungi of Forest Nurseries. Indian Journal of Forestry. 25:359- 361. https://eurekamag.com/research/003/647/003647093.php

Krisnadi, A.D. 2014. Kelor Super Nutrisi. Blora: Kelorina.com. https://kelorina.com/ebook-kelor-super-nutrisi/

Kumar, P.S. Mishra, D., Ghosh, G., and Panda, C. 2010. Medicinal Uses and Pharmalogical Properties of Moringa oleifera. International Journal Phytomedicine. 2 : 210-216. https://ijp.arjournals.org/index.php/ijp/article/view/39/39

Mach J. 2015. Phytol from Degradation of Chlorophyll Feeds Biosynthesis of Tocopherols. Plant Cell. 27(10):2676 https://doi.org/10.1105%2Ftpc.15.00860

Mary, A. and Giri, R. 2018. GC-MS Analyisis of Bioactive Compounds of Achyranthes Aspera. World Journal of Pharmaceutical Research. 7(1): hhtps://doi.org/1045-1056. 10.20959/wjpr20181-10540

Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., and Rice-Evans, C. A. 1996. Antioxidant activities of carotenes and xanthophylls. FEBS Letters. 384(3): 240–242. https://doi.org/10.1016/0014-5793(96)00323-7

Mohammad, Ghaidaa & Al-Jassani, Mohammad & Hameed, Imad. (2016). Anti-bacterial, Antifungal Activity and Chemical Analysis of Punica grantanum (Pomegranate peel) Using GC-MS and FTIR Spectroscopy. International Journal of Pharmacognosy and Phytochemical Research. 8: 480-494. https://www.researchgate.net/publication/298294390_Anti-bacterial_Antifungal_Activity_and_Chemical_Analysis_of_Punica_grantanum_Pomegranate_peel_Using_GC-MS_and_FTIR_Spectroscopy

Mukunzi, D., Nsor-Atindana, J., Xiaoming, Z., Gahungu, A., Karangwa, E., and Mukamurezi, G. 2011. Comparison of Volatile Profile of Moringa oleifera Leaves from Rwanda and China Using HS-SPME. Pakistan Journal of Nutrition. 10(7): 602-608.

Nishanthini, A., Mohan, V.R., and Jeeva, S. 2014. Phytochemical, FT-IR and GC-MS Analysis of Stem and Leaf of Tiliacora acuminata (Lan) Hook F and Thomas (Menispermaceae). International Journal of Pharmaceutical Sciences and Reaserch. 5(9): 3977-3986.

Ogunlesi, M., Okiei, W., Ofor, E., and Osibote, E. 2009. Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. African Journal of Biotechnology. 8 (24): 7042-7050.

Oka, A.A., Wiyana, K.A., Sugitha, I.M., and Miwada, I.N.S. 2016. Identifikasi Sifat Fungsional Daun Jati, Kelor dan Kayu Manis dan Potensinya sebagai Sumber Antioksidan pada Edible Film. Jurnal Sain Peternakan Indonesia. 11(1):1-8. https://doi.org/10.31186/jspi.id.11.1.1-8

Onoda T, Morikawa S, Harada T, Morikawa K. 1985. Antitumor activity of D-mannosamine in vitro: cytotoxic effect produced by mannosamine in combination with free fatty acids on human leukemia T-cell lines. Jpn J Clin Oncol. 15(3):545-52.

Pinto, M.E., Araújo, S.G., Morais, M.I., Sá, N.P., Lima, C.M., Rosa, C.A., Siqueira, EP., Johann, S., and Lima. 2017. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Cienc. 89(3):1671-1681.

Putra, I.W., Dharmayudha, A.A., and Sudimartini, L.M. 2016. Identifikasi Senyawa Kimia Ekstrak Etanol Daun Kelor (Moringa oleifera L) di Bali. Indomesia Medicus Veterinus. 5(5):464-473.

Qi, X., and Zhang, D. 2014. Plant Metabolomics and Metabolic Biology. Journal of Integrative Plant Biology. 56(9): 814-815.

Rajmohamed, M.A., Natarajan, S., Palanisamy, P., Abdulkader, A.M., and Govindaraju. 2017. Antioxidant and cholinesterase inhibitory activities of ethyl acetate extract of Terminalia chebula: Cell-free In vitro and In silico studies. Pharmacognosy Magazine. 13(51): 437-445.

Roessner, U., and Beckles. D.M. 2009. Metabolite Measurements. J. Schwender (ed.). Plant Metabolic Networks. New York: Springer.

Scholar, E. 2007. Gentamicin. Omaha :University of Nebraska Medical Center.

Sparkman, D., Penton, Z.E., and Kitson, F.G. 2011. Gas Chromatography and Mass Spectrometry, Second Edition. USA : Elsevier Inc.

Subramanian, S., Dowlath,M.J., Karuppannan, S.K., Saravanan, and Arunachalam, K.D., 2020. Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre. Pharmacogn J. 12(4):749-761.

Sumayyah, S. dan Salsabilla, N.2017. Obat Tradisional : Antara Kha-siat dan Efek Sampingnya. Majalah Farmasetika. 2(5):1-4.

Teh, C.H., Nazni, W.A., Nurulhusna, A.H., Norazah, A., and Lee, H.L. 2017. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiology. 17(36):1-8.

Tiloke, C., Anand, K., Gengan, R.M., and Chuturgoon, A.A. 2018. Moringo oleifera and Their Phytonanoparticles: Potential antiproliferative Agents Againts Cancer. Biomedicine and Pharmacotherapy. 108:457-466.

Teresa, M. R.-C., Rosaura, V.-G., Elda, C.-M., and Ernesto, G.-P. 2014. The Avocado Defense Compound Phenol-2,4-bis (1,1-dimethylethyl) is Induced by Arachidonic Acid and Acts Via The Inhibition ff Hydrogen Peroxide Production by Pathogens. Physiological and Molecular Plant Pathology. 87: 32–41.

Wardani, I.K., and Suryono. 2019. Effect of Moringa oleifera (Lam) Leaf Extracts on Growth of Chicken Embryo Induced by Alkohol. NurseLine Journal. 4(1):61-67.

Zekeya, N., Kidkuli, A.W., and Chacha, M. 2014. Analysisi of Phytochemical Composition of Bersama abyssinica by Gas Chromatography-Mass Spectrometry. Journal of Pharmacognosy and Phytochemistry. 3(4):245-252.

Zhu, Y., Yin, Q., and Yang, Y. 2020. Comprehensive Investigation of Moringa oleifera from Different Regions by Simultaneous Determination of 11 Polyphenols Using UPLC-ESI-MS/MS. Molecules. 25(676) : 1-25.

Downloads

Published

2023-06-14

How to Cite

Juswardi, Putriani, K. ., & Harmida. (2023). Metabolite Profile of Moringa Leaves (Moringa oleifera Lam.) from Several Regions in South Sumatra, Indonesia. International Journal of Life Science and Agriculture Research, 2(6), 129–136. https://doi.org/10.55677/ijlsar/V02I06Y2023-08