Indigenous Fungi from Batik Wastewater Exhibit Decolorization Potential for Remazol Red Dye

Authors

  • Juanita HIbatullah Department of Biology, Faculty of Science and Technology, Universitas Merangin. Jl. Jendral Sudirman, Merangin, Jambi, Indonesia.
  • Rina Sri Kasiamdari Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia.

DOI:

https://doi.org/10.55677/ijlsar/V03I10Y2024-01

Keywords:

Fungi, Bioremediation, Decolorizaion, Wastewater Treatment

Abstract

The study aimed to isolate and characterize indigenous fungi from batik waste-contaminated soil in Surakarta for their potential in decolorizing Remazol Red dye. Six fungal isolates (7 SPG, 10 SPJ, 12 SPL, 19 SPS, 41 SRP, and 99 RQX) were successfully isolated and screened for ligninolytic activity. The decolorization assay of Remazol Red at 250 ppm for 120 hours showed that the isolate with 41 SRP demonstrated the highest decolorization percentage of 87.72%. Morphological identification revealed the isolates (12 SPL, 19 SPS, 41 SRP, and 99 RQX) identified as Trichoderma sp., 7 SPG as Fusarium sp., and 10 SPJ as Penicillium sp.. These findings suggest the potential of indigenous fungi in bioremediating batik waste contamination.

References

Afiya, H., Ahmet, E. E., & Shah, M. M. (2019). Enzymatic Decolorization of Remazol Brilliant Blue Royal (RB 19) Textile Dye by White Rot Fungi. Journal of Applied and Advanced Research, 4(1).

Bhatnagar, A., Tamboli, E., & Mishra, A. (2021). Wastewater Treatment and Mycoremediation by Pleurotus ostreatus Mycelium. IOP Conference Series: Earth and Environmental Science. 775(1).

Bergsten-Torralba, L.R.; Nishikawa, M.M.;Baptista, D.F.; Magalhães, D.P.; da Silva, M. (2009). Decolorization of Different Textile Dyes by Penicillium simplicissimum and Toxicity Evaluation After Fungal Tre. Brazilian Journal of Microbiology, 40.

Brito-Vega, H. (2020). The Morphological and Molecular Characterization of Trichoderma spp. in Cocoa Agroforestry Systems. Open Science Journal, 5(4).

Dewi, R. S., Kasiamdari, R. S., Martani, E., & Purwestri, Y. A. (2018). Decolorization and Detoxification of batik dye effluent Containing Indigosol Blue-04B Using Fungi Isolated From Contaminated Dye Effluent. Indones. J. Biotechnol., 23(2).

El-rahim, W. M. A., Moawad, H., Abdel, A. Z., & Sadowsky, M. J. (2017). Optimization of Conditions for Decolorization Of Azo-Based Textile Dyes by Multiple Fungal Species. Journal of Biotechnology, 260.

Gajera, H. P., Bambharolia, R. P., Hirpara, D. G., Patel, S. V., & Golakiya, B. A. (2015). Molecular Identification and Characterization of novel Hypocrea koningii Associated with Azo Dyes Decolorization and Biodegradation Of Textile Dye Effluents. Process Safety and Environmental Protection, 98.

Illuri, R., Kumar, M., Eyini, M., Veeramanikandan, V., Almaary, K. S., Elbadawi, Y. B., Biraqdar, M. A., & Balaji, P. (2021). Partial Purification and Characterization of Ligninolytic Enzymes from Selected Basidiomycetes Mushroom Fungi. Saudi Journal of Biological Sciences, 28(12).

Ingle, M. R., & Mishra, R. L. (2016). Production of Laccase Enzyme By Trichoderma erinaceum, Indian Journal Of Applied Research, 6(10).

Kaur, B., Kumar, B., Garg, N., & Kaur, N. (2015). Statistical Optimization of Conditions for Decolorization of Synthetic Dyes by Cordyceps militaris MTCC 3936 Using RSM. Biomed Res Intl, 2015.

Kumar, R., Jitender, S., & Suresh, K. (2012). Isolation and Evaluation of Fungal Strains from Textile Effluent Disposal Sites for Decolorization of Various Azo Dyes. Terrestrial and Aquatic Environmental Toxicology, 6(2).

Latif, W., Ciniglia, C., Iovinella, M., Shafiq, M., & Papa, S. (2023). Role of White Rot Fungi in Industrial Wastewater Treatment: A Review. In Applied Sciences. Multidisciplinary Digital Publishing Institute (MDPI), 13(13).

Lee, Y. S. (2000). Qualitative Evolution of Ligninolytic Enzyme in Xylariaceous Fungi. .J Microbiol Biotechnol. 10(4): 462-469.

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2).

Munir, E., Rahayu, V., Priyani, N., & Yurnaliza. 2018. Decolorization of Batik Naphthol Dye by Local Ligninolytic Fungal Isolates. Journal of Physics: Conference Series, 1116(5).

Pit, J. I.& Hocking, 2013. Fungi and Food Spolage Thrid Edition. New York: Springer.

Pandya, B., Albert, S., Pandya, B., & Albert, S. (2014). Evaluation Of Trichoderma reesei As A Compatible Partner With Some White Rot Fungi For Potential Bio-Bleaching in Paper Industry. Annal Of Biological Research, 5(4).

Parmar, P. R. (2014). Decolorization of Acridine Rred Dye by The Fungi Aspergillus species. Journal of Scientific and Innovative Research, 3(4).

Pérez-Cadena, R., García-Esquivel, Y., Castañeda-Cisneros, Y. E., Serna-Díaz, M. G., Ramírez-Vargas, M. R., Muro-Urista, C. R., & Téllez-Jurado, A. (2020). Biological decolorization of Amaranth Dye with Trametes polyzona in An Airlift Reactor Under Three Airflow Regimes. Heliyon, 6(12).

Prasad, R. (2017). Mycoremediation and Environmental Sustainability Volume 1 (Vol. 1). Springer International Publishing. https://doi.org/10.1007/978-3-319-68957-9_2

Ranjusha, V. R., Pundir, R., Kumar, K., Dastidar, M. G., & Sreekrishnan, T. R. (2010). Biosorption of Remazol Black B Dye (Azo Dye) by The Growing Aspergillus flavus. Journal Of Environmental Science and Health. 45(10).

Romero-Arenas, O., Huerta, L. M., Huato, D. A. M., Hernández, F. D., & Victoria, A. D. A. (2009). The Characteristics of Trichoderma harzianum As A Limiting Agent In Edible Mushrooms. Revista Colombiana de Biotecnología, 11(2).

Sadhasivam, S., Savitha, S., Swaminathan, K., & Lin, F. H. (2008). Production, Purification and Characterization Of Mid-Redox Potential Laccase from A Newly Isolated Trichoderma harzianum WL1. Process Biochemistry, 43(7).

Saif, A. F., Yansen S. A., Alameen, A. S., Mane, S.B., & Undre, P.B. (2020). Identification of Penicillium Species of Fruits Using Morphology and Spectroscopic Methods. Journal of Physics: Conference Series, 1644.

Salem, S. S., Mohamed, A. A., Gl-Gamal, M. S., Talat, M., & Fouda, A. (2019). Biological Decolorization and Degradation Of Azo Dyes From Textile Wastewater Effluent By Aspergillus niger. Egyptian Journal of Chemistry, 62(10).

Senthivelan, T., Kanagaraj, J., Panda, R. C., & Narayani, T. (2019). Screening and Production Of A Potential Extracellular Fungal Laccase From Penicillium chrysogenum : Media Optimization By Response Surface Methodology ( RSM ) and Central Composite rotatable design ( CCRD ). Biotechnology Reports, 23.

Shanmugam, S., Hari, A., Ulaganathan, P., Yang, F., Krishnaswamy, S., & Wu, Y. R. (2018). Potential Of Biohydrogen Generation Using The Delignified Lignocellulosic Biomass by A Newly Identified Thermostable Laccase from Trichoderma asperellum Strain BPLMBT1. Int. J. Hydrogen Energy, 43(7).

Singh, H. (2006). Mycoremediation: Fungal Bioremediation. In Mycoremediation: Fungal Bioremediation. United States of America: A John Wiley & Sons, Inc., Publication.

Singh, L., & Singh, V. P. (2012). Microbial Decolourization of Textile Dyes by The Fungus Trichoderma harzianum. Journal of Pure and Applied Microbiology. 66(4).

Ujat, A. H., Vadamalai, G., Hattori, Y., Nakashima, C., Wong, C. K. F., & Zulperi, D. (2021). Current Classification and Diversity of Fusarium species Complex, The Causal Pathogen Of Fusarium Wilt Disease of Banana in Malaysia. Agronomy, 11(10).

Downloads

Published

2024-10-05

How to Cite

HIbatullah, J., & Sri Kasiamdari, R. . (2024). Indigenous Fungi from Batik Wastewater Exhibit Decolorization Potential for Remazol Red Dye. International Journal of Life Science and Agriculture Research, 3(10), 793–799. https://doi.org/10.55677/ijlsar/V03I10Y2024-01