Effects of Phytochemical Antioxidants and Amino Acid Supplement (X-VIRUS) on the Growth Performance, Carcass Traits, Immune Response, Blood Biochemical Parameters and Antioxidant Capacity of Broilers
DOI:
https://doi.org/10.55677/ijlsar/V03I11Y2024-11Keywords:
Antioxidant; broiler; performance; X-VIRUS; biochemicalAbstract
ABSTRACT:
Background: The poultry industry continues to grow due to the availability, affordability, and nutritional value of eggs and meat. Factors influencing this growth include genetics, feed quality, disease prevention, and the use of antibiotics. However, the search for alternatives to antibiotics has gained momentum due to concerns about antibiotic resistance and consumer demand. This study aimed to evaluate the effectiveness of adding various doses of the commercial compound X-VIRUS solution (containing antioxidants and essential amino acids) to drinking water, with the goal of determining the optimal dose for improving broiler productivity.
Methods: A total of 360 unsexed Ross 308 broilers were assigned to four treatments. Each treatment group was divided into six pens, with 15 chicks per pen. Treatments included: T1) control group (did not receive any additives), T2) 0.5 ml of X-VIRUS per liter of water, T3) 1 ml of X-VIRUS per liter of water, and T4) 1.5 ml of X-VIRUS per liter of water. Performance, carcass traits, biochemical blood variables and antioxidant capacity of broilers were assessed.
Results: Administering X-VIRUS solution at a dose of 1.5 ml/l in broilers' drinking water increased body weight and weight gain compared to the lower doses. Additionally, higher X-VIRUS doses improved feed intake and feed conversion ratios. X-VIRUS solution increased significantly the relative weight of carcass, breast, and thigh in the fifth week. Higher X-VIRUS doses (1 and 1.5ml/l) led to higher antibody titers compared to lower doses. X-VIRUS solution reduced triglyceride, cholesterol, LDL, glucose, ALT and MDA levels and increased HDL, total protein levels and GSH-Px activity, while albumin and globulin levels remained unchanged.
Conclusions: administering a dose of 1.5ml/l of X-virus solution showed the best results in the performance, carcass characteristics, blood parameters and antioxidant capacity of broilers.
References
Abou-Kassem, D. E., El-Abasy, M. M., Al-Harbi, M. S., Abol-Ela, S., Salem, H. M., El-Tahan, A. M., El-Saadony, M. T., Abd El-Hack, M. E., & Ashour, E. A. (2022). Influences of total sulfur amino acids and photoperiod on growth, carcass traits, blood parameters, meat quality and cecal microbial load of broilers. Saudi journal of Biological Sciences, 29(3),1683-1693. https://doi.org/10.1016/j.sjbs.2021.10.063
Acamovic, T., & Brooker, J. D. (2005). Biochemistry of plant secondary metabolites and their effects in animals. Proceedings of The Nutrition Society, 64(3), 403-412. https://doi.org/10.1079/PNS2005449
Afkhami, M., Kermanshahi, H., & Majidzadeh Heravi, R. (2020). Evaluation of whey protein sources on performance, liver antioxidants and immune responses of broiler chickens challenged with ethanol. Journal of Animal Physiology and Animal Nutrition 104(3), 898-908. https://doi.org/10.1111/jpn.13327
Aji, S. B., Ignatius, K., Asha'Adatu, Y., Nuhu, J. B., Abdulkarim, A., Aliyu, U., Gambo, M. B., Ibrahim, M. A., & Abubakar, H. (2011). Effects of feeding onion (Allium cepa) and garlic (Allium sativum) on. Research Journal of Poultry Science, 4, 22-27.
Amezcua, C. M., Parsons, C. M., Singh, V., Srinivasan, R., & Murthy, G. S. (2007). Nutritional characteristics of corn distillers dried grains with solubles as affected by the amounts of grains versus solubles and different processing techniques. Poultry Science, 86(12), 2624-2630. https://doi.org/10.3382/ps.2007-00137
Amezcua, C. M., Parsons, C. M., Singh, V., Srinivasan, R., & Murthy, G. S. (2007). Nutritional characteristics of corn distillers dried grains with solubles as affected by the amounts of grains versus solubles and different processing techniques. Poultry science, 86(12), 2624-2630. https://doi.org/10.3382/ps.2007-00137
Andersson, M. I., & MacGowan, A. P. (2003). Development of the quinolones. Journal of Antimicrobial Chemotherapy, 51(1), 1-11. https://doi.org/10.1093/jac/dkg212
Attia, Y. A., Hassan, R. A., Shehatta, M. H., & Abd-El-Hady, S. B. (2005). Growth, carcass quality and serum constituents of slow growing chicks as affected by betaine addition to diets containing 2. Different levels of methionine. International Journal of Poultry Science, 4(11), 856-865. https://doi.org/10.3923/ijps.2005.856.865
Aviagen. (2018). Ross Broiler Management Handbook-2018. In Aviagen Ross Management Guide, 1–147. Huntsville, AL: Aviagen Group. https://aviagen.com/assets/Tech_Center/Ross_Broiler/Ross- BroilerHandbook2018-EN.pdf.
Ayssiwede, S. B., Chrysostome, C., Ossebi, W., Dieng, A., Hornick, J. L., & Missohou, A. (2010). Digestibility and metabolic utilisation and nutritional value of Cassia tora (Linn.) leaves meal incorporated in the diets of indigenous Senegal chickens. Revue de Médecine Vétérinaire, 549-558. https://doi/full/10.5555/20113044568
Baker, D. H. (2009). Advances in protein-amino acid nutrition of poultry. Amino Acids, 37, 29-41. https://doi.org/10.1007/s00726-008-0198-3
Bampidis, V. A., Christodoulou, V., Florou-Paneri, P., Christaki, E., Chatzopoulou, P. S., Tsiligianni, T., & Spais, A. B. (2005). Effect of dietary dried oregano leaves on growth performance, carcase characteristics and serum cholesterol of female early maturing turkeys. British Poultry Science, 46(5), 595-601. https://doi.org/10.1080/00071660500256057
Baracos, V. E., & Mackenzie, M. L. (2006). Investigations of Branched-Chain Amino Acids and Their Metabolites inAnimal Models of Cancer. The Journal of Nutrition, 136(1), 237S-242S. https://doi.org/10.1093/jn/136.1.237S
Bartell, S. M., & Batal, A. B. (2007). The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poultry Science, 86(9), 1940-1947. https://doi.org/10.1093/ps/86.9.1940
Belloir, P., Lessire, M., Lambert, W., Corrent, E., Berri, C., & Tesseraud, S. (2019). Changes in body composition and meat quality in response to dietary amino acid provision in finishing broilers. Animal, 13(5), 1094-1102. https://doi.org/10.1017/S1751731118002306
Billah, M. M., Rana, S. M., Hossain, M. S., Ahamed, S. K., Banik, S., & Hasan, M. (2015). Ciprofloxacin residue and their impact on biomolecules in eggs of laying hens following oral administration. International Journal of Food Contamination, 2,1-7. https://doi.org/10.1186/s40550-015-0019-x
Boney, J. W., & Moritz, J. S. (2017). The effects of Spirulina algae inclusion and conditioning temperature on feed manufacture, pellet quality, and true amino acid digestibility. Animal Feed Science and Technology, 224, 20-29. https://doi.org/10.1016/j.anifeedsci.2016.11.008
Botsoglou, N. A., Florou-Paneri, P., Christaki, E., Fletouris, D. J., & Spais, A. B. (2002). Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues. British Poultry Science, 43(2), 223-230. https://doi.org/10.1080/00071660120121436
Bravo, D., & Ionesco, C. (2008). Meta analysis of the effect of a mixture of carvacrol, cinnamaldehyde and capsicum oleoresin in broilers. In Book of Abstracts for the 10th World Conference on Animal Production. 150-150. Wageningen Academic. https://doi.org/10.3920/9789086865789_300
Brosnan, J., & Brosnan, M. (2006). 5th Amino Acid Assessment Workshop—The Sulfur-Containing Amino Acids: An Overview. The Journal of Nutrition, 136, 16365-16405. https://doi.org/10.1093/jn/136.6.1636S
Cao, F. L., Zhang, X. H., Yu, W. W., Zhao, L. G., & Wang, T. (2012). Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poultry Science, 91(5), 1210-1221. https://doi.org/10.3382/ps.2011-01886
Chen, Q., Wang, E., Ma, L., & Zhai, P. (2012). Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids in Health and Disease, 11, 1-8. https://doi.org/10.1186/1476-511X-11-56
Chrystal, P. V., Moss, A. F., Khoddami, A., Naranjo, V. D., Selle, P. H., & Liu, S. Y. (2020). Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poultry Science, 99(3), 1421-1431. https://doi.org/10.1016/j.psj.2019.10.060
Comi, M. (2014). The role of some additives in enhancing feed efficiency and health in monogastric animals. M. S. thesis, Università degli Studi di Milano.
Daramola, O. T. (2019). Medicinal plants leaf meal supplementation in broiler chicken diet: effects on performance characteristics, serum metabolite and antioxidant status. Animal Research International, 16(2), 3334-3342.
De la Torre, R. (2008). Bioavailability of olive oil phenolic compounds in humans. Inflammopharmacology, 16(5), 245-247. https://doi.org/10.1007/s10787-008-8029-4
Du, E., Wang, W., Gan, L., Li, Z., Guo, S., & Guo, Y. (2016). Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology, 7, 1-10. https://doi.org/10.1186/s40104-016-0079-7
El-Katcha, M. I., Soltan, M. A., El-Shall, N. A., & El-Desoky, A.M. (2018). Effect of high dietary level of some amino acids and coccidial infection on growth performance and health status of broiler chicken. Alexandria Journal of Veterinary Sciences, 58(1). https://doi.org/110.5455/ajvs.281585
Estalkhzir, F. M., Khojasteh, S., & Jafari, M. (2013). The effect of different levels of threonine on performance and carcass characteristics of broiler chickens. Journal of Novel Applied Sciences, 2(9), 382-386.
Faramarzzadeh, M., Behroozlak, M., Samadian, F., & Vahedi, V. (2017). Effects of chicory powder and butyric acid combination on performance, carcass traits and some blood parameters in broiler chickens. The Iranian Journal of Applied Animal Science, 7(1), 139-145.
Fouad, A. M., El-Senousey, H. K., Yang, X. J., & Yao, J. H. (2013). Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, 7(8), 1239-1245. https://doi.org/10.1017/S1751731113000347
Gazwi, H. S., Mahmoud, M. E., & Toson, E. M. (2022). Analysis of the phytochemicals of Coriandrum sativum and Cichorium intybus aqueous extracts and their biological effects on broiler chickens. Scientific Reports, 12(1), 6399. https://doi.org/10.1038/s41598-022-10329-2
Gehring, C. K., Lilly, K. G. S., Shires, L. K., Beaman, K. R., Loop, S. A., & Moritz, J. S. (2011). Increasing mixer-added fat reduces the electrical energy required for pelleting and improves exogenous enzyme efficacy for broilers. The Journal of Applied Poultry Research, 20(1), 75-89. https://doi.org/10.3382/japr.2009-00082
Ghavi, S., Zarghi, H., & Golian, A. (2020). Effect of dietary digestible sulphur amino acids level on growth performance, blood metabolites and liver functional enzymes of broilers 1–11 days of age. The Italian Journal of Animal Science, 19(1), 1439-1449. https://doi.org/10.1080/1828051X.2020.1847606
Ghazalah, A. A., El-Hakim, A. S. A., & Refaie, A. M. (2007). Response of broiler chicks to some dietary growth promoters throughout different growth periods. Egyptian Poultry Science Journal, 53-77. https://doi.org/doi/full/10.5555/20083151188
González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary Phytochemicals and Their Potential Effects on Obesity: a Review. Pharmacological research, 64 (5), 438–455. https://doi.org/10.1016/j.phrs.2011.07.004
Gupta, K. K., Taneja, S. C., Dhar, K. L., & Atal, C. K. (1983). Flavonoids of Andrographis paniculata. Phytochemical, 22(1), 314-315. https://doi.org/10.1016/S0031-9422(00)80122-3
Hashemipour, H., Kermanshahi, H., Golian, A., & Veldkamp, T. (2013). Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science, 92(8), 2059-2069. https://doi.org/10.3382/ps.2012-02685
Hassan, H. M. A., El-Moniary, M. M., Hamouda, Y., El-Daly, E. F., Youssef, A. W., & Abd El-Azeem, N. A. (2016). Effect of different levels of Moringa oleifera leaves meal on productive performance, carcass characteristics and some blood parameters of broiler chicks reared under heat stress conditions. Asian Journal of Animal and Veterinary Advances, 11(1), 60-66. https://doi.org/10.3923/ajava.2016.60.66
Hilliar, M., Keerqin, C., Girish, C. K., Barekatain, R., Wu, S. B., & Swick, R. A, (2020). Reducing protein and supplementing crystalline amino acids, to alter dietary amino acid profiles in birds challenged for subclinical necrotic enteritis. Poultry Science, 99(4), 2048-2060. https://doi.org/10.1016/j.psj.2019.11.042
Imari, Z. K., Hassanabadi, A., & Nassiri Moghaddam, H. (2020). Response of broiler chickens to calcium and phosphorus restriction: Effects on growth performance, carcase traits, tibia characteristics and total tract retention of nutrients. Italian journal of animal science, 19(1), 929-939. https://doi.org/10.1080/1828051X.2020.1808101
Jahanian, R., & Khalifeh‐Gholi, M. (2018). Marginal deficiencies of dietary arginine and methionine could suppress growth performance and immunological responses in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 102(1), e11-e20. https://doi.org/10.1111/jpn.12695
Jain, D. C., Gupta, M. M., Saxena, S., & Kumar, S. (2000). LC analysis of hepatoprotective diterpenoids from Andrographis paniculata. Journal of Pharmaceutical and Biomedical Analysis, 22(4), 705-709. https://doi.org/10.1016/S0731-7085(99)00297-6
Khoobani, M., Hasheminezhad, S. H., Javandel, F., Nosrati, M., Seidavi, A., Kadim, I. T., Laudadio, V., & Tufarelli, V. (2019). Effects of dietary chicory (Chicorium intybus L.) and probiotic blend as natural feed additives on performance traits, blood biochemistry, and gut microbiota of broiler chickens. Antibiotics, 9(1), 5. https://doi.org/10.3390/antibiotics9010005
Kidd, M. T., McDaniel, C. D., Branton, S. L., Miller, E. R., Boren, B. B., & Fancher, B. I. (2004). Increasing amino acid density improves live performance and carcass yields of commercial broilers. Journal of Applied Poultry Research, 13(4), 593-604. https://doi.org/10.1093/japr/13.4.593
Kim, J. E., Lillehoj, H. S., Hong, Y. H., Kim, G. B., Lee, S. H., Lillehoj, E. P., & Bravo, D. M. (2015). Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds. Research journal of Veterinary Sciences, 102, 150-158. https://doi.org/10.1016/j.rvsc.2015.07.022
Kuldeep Dhama, K. D., Ruchi Tiwari, R. T., Khan, R. U., Sandip Chakraborty, S. C., Marappan Gopi, M. G., Kumaragurubaran Karthik, K. K., Mani Saminathan, M. S., Desingu, P. A., & Sunkara, L. T. (2014). Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances-a review. International Journal of Pharmaceutics, 10, 129-159. https://doi/full/10.5555/20143296417
Liu, S. J., Wang, J., He, T. F., Liu, H. S., & Piao, X. S. (2021). Effects of natural capsicum extract on growth performance, nutrient utilization, antioxidant status, immune function, and meat quality in broilers. Poultry Science, 100(9), 101301. https://doi.org/10.1016/j.psj.2021.101301
Loar II, R. E., Wamsley, K. G. S., Evans, A., Moritz, J. S., & Corzo, A. (2014). Effects of varying conditioning temperature and mixer-added fat on feed manufacturing efficiency, 28-to 42-day broiler performance, early skeletal effect, and true amino acid digestibility. Journal of Applied Poultry Research, 23(3), 444-455. https://doi.org/10.3382/japr.2013-00930
Lopes, M. G., Dominguez, J. H. E., Peter, C. M., Santos, E., Rodrigues, P. A., Rodrigues, P. R. C., Picoli, T., Corrêa, M. N., Schmitt, E., de Lima, M., & Fischer, G. (2019). Resposta imune humoral em novilhas de corte suplementadas com sal mineral com ou sem adição de metionina protegida da degradação ruminal. Semina: Revista de Ciências Agrárias, 40, 3057-3068. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3057
Luangtongkum, T., Morishita, T. Y., Ison, A. J., Huang, S., McDermott, P. F., & Zhang, Q. (2006). Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Applied and Environmental Microbiology, 72(5), 3600-3607. https://doi.org/10.1128/AEM.72.5.3600-3607.2006
Lynch, E., Bowen, K., Ayres, V., Boltz, T., Wamsley, K. G. S., Boney, J. W., & Moritz, J. S. (2023). Hygienic pelleting can decrease Hubbard× Ross 708 apparent ileal amino acid digestibility, broiler performance, and increase digestible amino acid requirement. Journal of Applied Poultry Research, 32(3),100355. https://doi.org/10.1016/j.japr.2023.100355
Majdeddin, M., Golian, A., Kermanshahi, H., Michiels, J., & De Smet, S. (2019). Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets. British Poultry Science, 60(5), 554-563. https://doi.org/10.1080/00071668.2019.1631447
Mansoub, N. H. (2011). Comparison of using different level of black pepper with probiotic on performance and serum composition of broiler chickens. Journal of Basic and Applied Sciences, 1, 2425–2428.
Martinez, M., McDermott, P., & Walker, R. (2006). Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals. The veterinary journal, 172(1), 10-28. https://doi.org/10.1016/j.tvjl.2005.07.010
Mathivanan, R., & Edwin, S. C. (2012). Hematological and serum biochemical parameters of broilers fed with Andrographis paniculata as an alternative to antibiotic growth promoter. Journal of Medicinal Plants Research, 6(44), pp.5647-5650. https://doi.org/10.5897/JMPR12.430
Métayer, S., Seiliez, I., Collin, A., Duchêne, S., Mercier, Y., Geraert, P. A., & Tesseraud, S. (2008). Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. The Journal of Nutritional Biochemistry, 19(4), 207-215. https://doi.org/10.1016/j.jnutbio.2007.05.006
Mirza Aghazadeh, A., & Nabiyar, E. (2015). The effect of chicory root powder on growth performance and some blood parameters of broilers fed wheat-based diets. Journal of Applied Animal Research, 43(4), 384-389. https://doi.org/10.1080/09712119.2014.978778
Mirzaei-Aghsaghali A. (2012). Importance of medical herbs in animal feeding: A review. Annals of Biological Research, 3(2), 918-923.
National Research Council, and Subcommittee on Poultry Nutrition. Nutrient requirements of poultry: 1994. National Academies Press. Nottingham, UK.
Omar, A. E., Al-Khalaifah, H. S., Mohamed, W. A., Gharib, H. S., Osman, A., Al-Gabri, N. A., & Amer, S. A. (2020). Effects of phenolic-rich onion (Allium cepa L.) extract on the growth performance, behavior, intestinal histology, amino acid digestibility, antioxidant activity, and the immune status of broiler chickens. Frontiers in Veterinary Science, 7, 582612. https://doi.org/10.3389/fvets.2020.582612
Østergård, K., Björck, I., & Vainionpää, J. (1989). Effects of extrusion cooking on starch and dietary fibre in barley. Food Chemistry, 34(3), 215-227. https://doi.org/10.1016/0308-8146(89)90142-8
Papadopoulos, M.C. (1989). Effect of processing on high-protein feedstuffs: a review. Biological wastes, 29(2), 123-138. https://doi.org/10.1016/0269-7483(89)90092-X
Papadopoulou, A., Petrotos, K., Stagos, D., Gerasopoulos, K., Maimaris, A., Makris, H., Kafantaris, I., Makri, S., Kerasioti, E., Halabalaki, M., & Brieudes, V. (2017). Enhancement of antioxidant mechanisms and reduction of oxidative stress in chickens after the administration of drinking water enriched with polyphenolic powder from olive mill waste waters. Oxidative medicine and cellular longevity. https://doi.org/10.1155/2017/8273160
Pignatelli, P., Ghiselli, A., Buchetti, B., Carnevale, R., Natella, F., Germano, G., Fimognari, F., Di Santo, S., Lenti, L., & Violi, F. (2006). Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis, 188(1), 77-83. https://doi.org/1016/j.atherosclerosis.2005.10.025
Rahimi, S., Teymori Zadeh, Z., Torshizi, K., Omidbaigi, R., & Rokni, H. (2011). Effect of the three herbal extracts on growth performance, immune system, blood factors and intestinal selected bacterial population in broiler chickens. Journal of Agricultural Science and Technology, 13(4), 527-539. https://doi.org/10.1001.1.16807073.2011.13.4.6.5
Ren, Z., Bütz, D. E., Whelan, R., Naranjo, V., Arendt, M. K., Ramuta, M. D., Yang, X., Crenshaw, T. D., & Cook, M. E. (2020). Effects of dietary methionine plus cysteine levels on growth performance and intestinal antibody production in broilers during Eimeria challenge. Poultry Science, 99(1), 374-384. https://doi.org/10.3382/ps/pez503
Roy, D. M. & Schneeman, B. O. (1981). Effect of soy protein, casein and trypsin inhibitor on cholesterol, bile acids and pancreatic enzymes in mice. Journal of Nutrition, 111(5), 878-885. https://doi.org/10.1093/jn/111.5.878
Rubio, A. A., Hess, J. B., Berry, W. D., Dozier III, W. A., & Pacheco, W. J. (2020). Effects of feed form and amino acid density on productive and processing performance of broilers. Journal of Applied Poultry Research, 29(1), 95-105. https://doi.org/10.3382/japr/pfz032
Sahu, J., Koley, K. M., & Sahu, B. (2017). Attribution of antibacterial and antioxidant activity of Cassia tora extract toward its growth promoting effect in broiler birds. Veterinary world, 10(2), 221. https://doi.org/10.14202/vetworld.2017.221-226
Scriver, C. R. (2001). Garrod's foresight; our hindsight. Journal of inherited metabolic disease, 24, 93–116. https://doi.org/10.1023/A:1010351630856
Soltan, M. A. (2009). Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. International Journal of Poultry Science, 8(1), 60-68. https://doi.org/10.3923/ijps.2009.60.68
Thomas, M., Van Zuilichem, D. J., & Van der Poel, A. F. B. (1997). Physical quality of pelleted animal feed. 2. Contribution of processes and its conditions. Animal Feed Science and Technology, 64(2-4), 173-192. https://doi.org/10.1016/S0377-8401(96)01058-9
Ul-Haq, I., Ullah, N., Bibi, G., Kanwal, S., Ahmad, M. S., & Mirza, B. (2012). Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iranian Journal of Pharmaceutical Research, 11(1), 241. https://doi.org/10. 22037/ IJPR. 2011. 1030
Xue, G. D., Barekatain, R., Wu, S. B., Choct, M., & Swick, R. A. (2018). Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poultry Science, 97(4), 1334-1341. https://doi.org/10.3382/ps/pex444
Yadav, A. S., Gautham Kolluri, G. K., Marappan Gopi, M. G., Kumaragurubaran Karthik, K. K., Malik, Y. S., & Kuldeep Dhama, K. D. (2016). Exploring alternatives to antibiotics as health promoting agents in poultry-a review. https://doi.org/10.18006/2016.4(3S).368.383
Yalçin, S., Handan, E. S. E. R., Onbaşilar, İ., &Yalçin, S. (2020). Effects of dried thyme (Thymus vulgaris L.) leaves on performance, some egg quality traits and immunity in laying hens. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(3), 303-311.
Yusrizal, Y., & Chen, T. C. (2003). Effect of adding chicory fructans in feed on fecal and intestinal microflora and excreta volatile ammonia. International Journal of Poultry Science, 2, 188-194. https://doi.org/10.5555/20033119231
Zeitz, J. O., Mohrmann, S., Käding, S. C., Devlikamov, M., Niewalda, I., Whelan, R., Helmbrecht, A., & Eder, K. (2019). Effects of methionine on muscle protein synthesis and degradation pathways in broilers. Journal of Animal Physiology and Animal Nutrition, 103(1), 191-203. https://doi.org/10.1111/jpn.13026
Zheng, C. D., Duan, Y. Q., Gao, J. M. & Ruan, Z.G. (2010). Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. Journal of the Chinese Medical Association, 73(6), 319-324. https://doi.org/10.1016/S1726-4901(10)70068-X
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Life Science and Agriculture Research
This work is licensed under a Creative Commons Attribution 4.0 International License.