Effect of Intercropping with Mungbean on Growth, Yield and Seed Protein Content of White and Purple Waxy Corn
DOI:
https://doi.org/10.55677/ijlsar/V04I02Y2025-03Keywords:
intercropping; purple waxy corn; white waxy corn; mungbean; seed proteinAbstract
This study aimed to determine the effect of intercropping with mungbeans on growth, yield, and protein content of waxy corn. The experiment was conducted on rainfed land in Rembitan village (Central Lombok, Indonesia) during the rainy season from December 2023 to March 2024, which was arranged using a Split Plot Design with three blocks and two treatment factors: intercropping (T0= no intercropping, T1= intercropping with mungbeans) as the main plots, and waxy corn varieties (J1= white, J2= purple waxy corn) as subplots. Observation variables included growth, yield components and seed protein content, and data were analyzed with analysis of variance (ANOVA) and Tukey's HSD using CoStat for Windows. The results showed that based on the main effect, intercropping significantly increased green leaf number at 28, 42 and 56 DAP (days after planting), weight of dry cobs per plant and protein content of the seeds. Both varieties of waxy corn were also significantly different in terms of green leaf number at 28, 42 and 56 DAP, cob length, weight of dry cob per plant and protein content of the seeds, which were on average higher in purple than in white waxy corn. However, there was an interaction effect of the treatment factors on green leaf number at 42 and 56 DAP, cob length, cob diameter, number of seed rows, weight of 100 seeds and weight of dry cob per plant, in which the effects of intercropping with mungbean were more significant on white than on the purple waxy corn. So it can be concluded that white waxy corn is more responsive than purple waxy corn to intercropping with mungbeans.
References
1. Kementerian Pertanian. (2020). Jenis-Jenis Pola Tanam. Retrieved Maret 10, 2024, from http://cybex.pertanian.go.id/mobile/artikel/91711/JENIS-JENIS-POLA-TANAM/
2. BPS (2023). Data Luas Tanam dan Produksi Jagung Tahun 2022-2023. Retrieved Maret 10, 2024, from https://www.bps.go.id/id/infographic?id=953
3. Suarni, S. (2013). Pengembangan pangan tradisional berbasis jagung mendukung diversifikasi pangan. Iptek Tanaman Pangan, 8(1), 39-47.
4. Yasin HG, M., Suarni, Santoso, S.B., Faesal, Talanca, A.H., dan Mejaya, M.J. (2017). Stabilitas Hasil Jagung Pulut Varietas Bersari Bebas pada Dataran Rendah Tropis. Penel. Pert. Tan. Pangan, Vol. 1, No. 3.
5. Tengah, J., Tumbelaka, S., & Toding, M. M. (2017). Pertumbuhan dan produksi jagung pulut lokal (Zea mays ceratina Kulesh) pada beberapa dosis pupuk NPK. In Cocos (Vol. 1, No. 1).
6. Pu Jing, M.S. (2006). Present in Partial Fulfilment of the Requirement for the Degree Doctor og Philosophy the Graduate School of the Ohio State Universisty (Dissertation). Dalam Jurnal Pemberian Krim Ekstrat Jagung Ungu (Zea Mays) Menghambat Peningkatan Kadar Mpm-1 Dan Penurunan Kolagen pada Tikus Wistar (Rattus Norvegicus).
7. Balai Penelitian Tanaman Serelia, (2023). Jagung Ketan dan Spesifikasinya. Retrieved Maret 10, 2024, from https://serealia.bsip.pertanian.go.id/
8. Maruapey, A. (2012). Pengaruh pupuk kalium terhadap pertumbuhan dan produksi berbagai jagung pulut (Zea mays ceratina L.). Agrikan: Jurnal Agribisnis Perikanan, 5(2), 33-45.
9. Genesiska, G., Mulyono, M., & Yufantari, A. I. (2021). Pengaruh jenis tanah terhadap pertumbuhan dan hasil tanaman jagung (Zea mays L.) varietas Pulut Sulawesi. PLANTROPICA: Journal of Agricultural Science, 5(2), 107-117.
10. Isnaini, J. L. (2017). Pembentukan Populasi Dasar Untuk Pemurnian Varietas Jagung Pulut Lokal Sulawesi Selatan. Jurnal Agrotan, 3(02), 12-18.
11. Francis, C. A. (1989). Biological efficiencies in multiple-cropping systems. Advances in Agronomy, 42, 1-42.
12. Li, L., Sun, J., Zhang, F., Li, X., Yang, S., & Rengel, Z. (2001). Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field crops research, 71(2), 123-137.
13. Zhang, F., & Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and soil, 248, 305-312.
14. Koesmaryono, Y., Sabaruddin, L., & Stigter, K. (2005). Derived Agrometeorological Information Serving Government and Farmers’ Decisions in Some Intercropping Systems in Southeast Sulawesi, Indonesia. Journal of Agricultural Meteorology, 60(5), 343-347.
15. Morgado, L. B., & Willey, R. W. (2008). Optimum plant population for maize-bean intercropping system in the Brazilian semi-arid region. Scientia Agricola, 65, 474-480.
16. Wangiyana, W., & Kusnarta, I. G. M. (1998). Peningkatan Serapan N dan Hasil Tanaman Jagung Ketan Varietas Lokal Bima melalui Tumpangsari dengan Beberapa Jenis Tanaman Legum. J. Penelitian Univ. Mataram, 14(1), 41-49.
17. Jati, F., Hutabarat, J., & Herawati, V. E. (2012). Pengaruh penggunaan dua jenis media kultur teknis yang berbeda terhadap pola pertumbuhan, kandungan protein dan asam lemak omega 3 EPA (Chaetoceros gracilis). Journal Of Aquaculture Management and Technology, 1(1), 221-235.
18. Lingga, G. K. (2015). Hasil dan Kualitas Benih Kacang Hijau (Vigna radiata (L.) Wilczek Tumpangsari Barisan dengan Jagung Manis (Zea mays kelompok Saccharata) (Doctoral dissertation, Universitas Gadjah Mada).
19. Polnaya, F., & Patty, J. E. (2012). Kajian pertumbuhan dan produksi varietas jagung lokal dan kacang hijau dalam sistem tumpangsari. Agrologia, 1(1), 288749.
20. Lakitan, B. (2010). Dasar-dasar fisiologi tumbuhan.
21. Jannah, M. (2023). HKI. Impact of Environmental Education Kit on Students' Environmental Literacy.
22. Prabawardani, S., Puadi, L., & Noya, A. I. (2021). Respon Pertumbuhan dan Hasil Jagung (Zea mays L.) Dalam Sistem Tumpangsari dengan Beberapa Jenis Tanaman Semusim. In: Proceedings: Peningkatan Produktivitas Pertanian Era Society 5.0 Pasca Pandemi, Universitas Jember.
23. Mayadewi, N. N. A. (2007). Pengaruh jenis pupuk kandang dan jarak tanam terhadap pertumbuhan gulma dan hasil jagung manis. Agritrop, 26(4), 153-159.
24. Anwar, K., Juliawati, J., & Puryani, I. (2021). Respon pertumbuhan dan hasil tanaman jagung manis pada sistem tumpang sari dengan kacang tanah dan jarak tanam. Serambi Saintia: Jurnal Sains dan Aplikasi, 9(1), 23-30.
25. Sirajuddin, M., & Lasmini, S. A. (2010). Respon pertumbuhan dan hasil jagung manis (Zea mays saccharata) pada berbagai waktu pemberian pupuk nitrogen dan ketebalan mulsa jerami. Agroland: Jurnal Ilmu-ilmu Pertanian, 17(3), 184-191.
26. Herlina, N., & Aisyah, Y. (2018). Pengaruh jarak tanam jagung manis dan varietas kedelai terhadap pertumbuhan dan hasil kedua tanaman dalam sistem tanam tumpangsari. Buletin Palawija, 16(1), 9-16.
27. Nurmasasinta, U., Astiko, W., & Listiana, B. E. (2022). Konsentrasi Hara N, P dan Hasil Panen pada Tumpangsari Jagung-Kedelai yang Ditambahkan Mikoriza dan Sumber Nutrisi di Lahan Kering Lombok Utara. Jurnal Ilmiah Mahasiswa Agrokomplek, 1(3), 233-242.
28. Rahni, N. M. (2012). Efek fitohormon PGPR terhadap pertumbuhan tanaman jagung (Zea mays). CEFARS: Jurnal Agribisnis dan Pengembangan Wilayah, 3(2), 27-35.
29. Worku, W. (2014). Sequential intercropping of common bean and mung bean with maize in southern Ethiopia. Experimental agriculture, 50(1), 90-108.
30. Ro, S., Roeurn, S., Sroy, C., & Prasad, P. V. (2023). Agronomic and yield performance of maize-mungbean intercropping with different mungbean seed rates under loamy sand soils of Cambodia. Agronomy, 13(5), 1293.
31. Wangiyana, W., Farida, N., Ngawit, I.K. (2021). Effect of peanut intercropping and mycorrhiza in increasing yield of sweet corn yield. IOP Conf. Ser.: Earth Environ. Sci. 648 012068.
32. Olayinka, B.U., Adefalu, L.L., Adisa, Y.A., Lawal, A.R., and Etejere, E.O. (2017). Effects of spatial arrangements of groundnut-maize intercrop on growth, yield and proximate composition of groundnut. AJPAS JOURNAL, 5, 1-7.
33. Farida, N., & Wangiyana, W. (2023). Increasing yield of waxy maize following paddy rice through mycorrhiza-biofertilization and additive intercropping with several rows of peanut. AIP Conf. Proc., 2583, 020009.
34. Sowiński, J. (2024). Intercropping maize (Zea mays L.) and field beans (Vicia faba L.) for forage, increases protein production. Scientific Reports, 14(1), 16419.
35. Javanmard, A., Machiani, M. A., Lithourgidis, A., Morshedloo, M. R., & Ostadi, A. (2020). Intercropping of maize with legumes: A cleaner strategy for improving the quantity and quality of forage. Cleaner Engineering and Technology, 1, 100003.
36. Stoltz, E., Nadeau, E., & Wallenhammar, A. C. (2013). Intercropping maize and faba bean for silage under Swedish climate conditions. Agricultural Research, 2, 90-97.
37. Zaeem, M., Nadeem, M., Pham, T.H., Ashiq, W., Ali, W., Gillani, S.S.M., Moise, E., Elavarthi, S., Kavanagh, V., Cheema, M., & Galagedara, L. (2021). Corn-soybean intercropping improved the nutritional quality of forage cultivated on podzols in boreal climate. Plants, 10(5), p.1015.
38. Jinghui, L., Zhaohai, Z., Lixin, J., Yuegao, H., Ying, W., & Hai, L. (2006). Intercropping of different silage maize cultivars and alfalfa. Zuo wu xue bao, 32(1), 125-130.
39. Wangiyana W., Aryana, I.G.P.M., and Dulur, N.W.D. 2021 Mycorrhiza biofertilizer and intercropping with soybean increase anthocyanin contents and yield of upland red rice under aerobic irrigation systems. IOP Conf. Ser.: Earth Environ. Sci., 637, 012087.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Life Science and Agriculture Research

This work is licensed under a Creative Commons Attribution 4.0 International License.