Assessing Silica-Enriched Biochar and N, P, K Fertilization in Newly Flooded Inceptisols: Impacts on Soil Chemical Properties, Phosphorus Use Efficiency, and Rice Productivity

Author's Information:

Fadlan Atalla Muhammad

Postgraduate Program of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia.

Ania Citraresmini

Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia.

Emma Trinurani Sofyan

Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia.

Vol 05 No 01 (2026):Volume 05 Issue 01 January 2026

Page No.: 34-43

Abstract:

Phosphorus (P) limitation remains a major constraint to rice productivity in newly flooded Inceptisols, despite relatively high total P reserves. The conversion of mineral soils into paddy fields induces rapid changes in redox conditions, iron dynamics, and silica availability, which strongly influence P availability and fertilizer efficiency. In recent years, silica-enriched biochar has emerged as a promising soil amendment due to its capacity to improve soil chemical properties, regulate iron-mediated P fixation, and enhance nutrient retention in flooded soils. This narrative review synthesizes recent advances on the roles of silica-enriched biochar and N, P, K fertilization in modifying soil chemical properties, phosphorus use efficiency, and rice productivity in newly flooded Inceptisols. The review highlights the effects of these management strategies on soil pH, cation exchange capacity, available and potential P pools, silica dynamics, plant P and Si uptake, and yield components such as grain yield and 1000-grain weight. Evidence from recent studies indicates that silica-enriched biochar contributes to improved P availability through competitive sorption with phosphate on iron oxides and increased cation retention, while balanced N, P, K fertilization enhances nutrient uptake and yield performance. Synergistic effects between biochar-silica and mineral fertilization are particularly important during the early stages of soil flooding, when nutrient dynamics are highly unstable. This review underscores the potential of integrating silica-enriched biochar with optimized N, P, K fertilization as a sustainable strategy to improve phosphorus use efficiency and rice productivity in newly established paddy soils.

KeyWords:

cation exchange capacity, iron–phosphorus interactions, phosphorus dynamics, rice yield components, silicon availability

References:

  1. FAO. (2022). The future of food and agriculture – Drivers and triggers for transformation. Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.4060/cc0959en 
  2. Susanti, W. I., Cholidah, S. N., & Agus, F. (2024). Agroecological nutrient management strategy for attaining sustainable rice self-sufficiency in Indonesia. Sustainability, 16(2), 845. https://doi.org/10.3390/su16020845 
  3. Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528(7580), 51–59. https://doi.org/10.1038/nature15743 
  4. Lal, R. (2020). Regenerative agriculture for food and climate. Journal of Soil and Water Conservation, 75(5), 123A–124A. https://doi.org/10.2489/jswc.2020.0620A 
  5. Kirk, G. J. D. (2004). The biogeochemistry of submerged soils. Wiley-Blackwell.
  6. BBSDLP. (2020). Peta sumber daya lahan pertanian Indonesia skala 1:250.000. Balai Besar Sumberdaya Lahan Pertanian, Badan Litbang Pertanian, Kementerian Pertanian, Indonesia.
  7. Muslim, R. Q., Kricella, P., Pratamaningsih, M. M., Purwanto, S., Suryani, E., & Ritung, S. (2020). Characteristics of Inceptisols derived from basaltic andesite from several locations in volcanic landform. Sains Tanah, 17(2), 115–121. https://doi.org/10.20961/STJSSA.V17I2.38221 
  8. Schaller, J., Faucherre, S., Joss, H., Obst, M., Goeckede, M., Planer-Friedrich, B., & Peiffer, S. (2022). Silicon as a potential limiting factor for phosphorus availability in paddy soils. Scientific Reports, 12, 20805. https://doi.org/10.1038/s41598-022-20805-4 
  9. Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., Price, C. A., Scheible, W. R., Shane, M. W., White, P. J., & Raven, J. A. (2012). Opportunities for improving phosphorus‐use efficiency in crop plants. New Phytologist, 195(2), 306–320. https://doi.org/10.1111/j.1469-8137.2012.04190.x 
  10. Ibrahim, M., Iqbal, M., Tang, Y.-T., Khan, S., Guan, D.-X., & Li, G. (2022). Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: A review. Agronomy, 12(10), 2539. https://doi.org/10.3390/agronomy12102539 
  11. Maranguit, D., Guillaume, T., & Kuzyakov, Y. (2017). Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms. CATENA, 158, 161–170. https://doi.org/10.1016/j.catena.2017.06.023 
  12. Huang, S., Pu, L., He, G., Wang, X., Chen, D., Xie, X., Qie, L., Dan, Y., Zhang, R., Gong, Z., & Lu, Y. (2024). Silicon in soil and its interaction with nitrogen, phosphorus, and potassium nutrients on rice yield: A case study of paddy fields in the Taihu Lake region, China, without a history of silicon fertilization. Soil and Tillage Research, 238, 106027. https://doi.org/10.1016/j.still.2024.106027 
  13. Yang, X., Ni, Y., Li, Z., Yue, K., Wang, J., Li, Z., Song, Z., & others. (2024). Silicon in paddy fields: Benefits for rice production and the potential of rice phytoliths for biogeochemical carbon sequestration. Science of the Total Environment, 172497. https://doi.org/10.1016/j.scitotenv.2024.172497 
  14. Irfan, M., Maqsood, M. A., Rehman, H. u., Mahboob, W., Sarwar, N., Hafeez, O. B. A., Hussain, S., Ercisli, S., Akhtar, M., & Aziz, T. (2023). Silicon Nutrition in Plants under Water-Deficit Conditions: Overview and Prospects. Water, 15(4), 739. https://doi.org/10.3390/w15040739 
  15. Jiang, H., Jiang, Z., Zhang, H., Li, Y., Li, W., Gao, K., Ma, X., Wang, G., Wei, X., & Wu, Z. (2025). Silicon Nutrition Improves Lodging Resistance of Rice Under Dry Cultivation. Plants, 14(3), 361. https://doi.org/10.3390/plants14030361 
  16. Elekhtyar, N. M., & AL-Huqail, A. A. (2023). Influence of Chemical, Organic, and Biological Silicon Fertilization on Physiological Studies of Egyptian Japonica Green Super Rice (Oryza sativa L.). Sustainability, 15(17), 12968. https://doi.org/10.3390/su151712968
  17. Klotzbücher, T., Treptow, C., Kaiser, K. et al. Sorption competition with natural organic matter as mechanism controlling silicon mobility in soil. Sci Rep 10, 11225 (2020). https://doi.org/10.1038/s41598-020-68042-x 
  18. Uhuegbue, P. O., Stein, M., Kalbitz, K., & Schaller, J. (2024). Silicon effects on soil phosphorus availability: Results obtained depend on the method used. Frontiers in Environmental Science, 12, 1461477. https://doi.org/10.3389/fenvs.2024.1461477 
  19. Mon, W. W., Toma, Y., & Ueno, H. (2024). Residual Effects of Rice Husk Biochar and Organic Manure Application after 1 Year on Soil Chemical Properties, Rice Yield, and Greenhouse Gas Emissions from Paddy Soils. Soil Systems, 8(3), 91. https://doi.org/10.3390/soilsystems8030091 
  20. Novair, B. S., Cheraghi, M., Faramarzi, F., Asgari Lajayer, B., Senapathi, V., Astatkie, T., & Price, G. W. (2023). Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicology and Environmental Safety, 263, 115228. https://doi.org/10.1016/j.ecoenv.2023.115228 
  21. Si, L., Xie, Y., Ma, Q., & Wu, L. (2018). The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field. Sustainability, 10(2), 537. https://doi.org/10.3390/su10020537 
  22. Sofyan, E. T., Citraresmini, A., Marganingrum, D., Mulyono, A., Djuwansah, R., Bachtiar, T., Nurjayati, R., Rachmawati, V., Hidawati, H., & Irwandhi, I. (2025). Assessment of silica-enriched biochar for enhancing soil fertility and mitigating methane emissions in acid-stressed rice fields. Journal of Ecological Engineering, 26(4), 148–160. https://doi.org/10.12911/22998993/188093 
  23. Schaller, J., Kleber, M., Puppe, D. et al. The importance of reactive silica for maintaining soil health. Plant Soil 513, 1651–1662 (2025). https://doi.org/10.1007/s11104-025-07299-5 
  24. Sofyan, E. T., Suryaningrat, I. B., & Nurida, N. L. (2025). The effect of biochar-silica and N, P, K fertilization on soil pH, silica content, phosphorus uptake, and rice yield in Inceptisols. International Journal of Life Science and Agriculture Research, 4(4), 1–12. https://doi.org/10.55677/ijlsar/V04I04Y2025-03 
  25. Ali, I., Yuan, P., Ullah, S., Iqbal, A., Zhao, Q., Liang, H., Khan, A., Imran, Zhang, H., Wu, X., Wei, S., Gu, M., & Jiang, L. (2022). Biochar Amendment and Nitrogen Fertilizer Contribute to the Changes in Soil Properties and Microbial Communities in a Paddy Field. Frontiers in microbiology, 13, 834751. https://doi.org/10.3389/fmicb.2022.834751 
  26. Grigg, A. R. C., Thomas Arrigo, L. K., Schulz, K., Rothwell, K. A., Kaegi, R., & Kretzschmar, R. (2022). Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions. Environmental science. Processes & impacts, 24(10), 1867–1882. https://doi.org/10.1039/d2em00290f 
  27. Theresa, K., Vijayakumar, S., Muthukrishnan, R., & Raja, V. (2026). Soil quality index assessment for conventional, organic and INM based rice cropping systems using key indicators as influenced by imbalanced fertilization. Frontiers in Environmental Science, 13, 1698081. https://doi.org/10.3389/fenvs.2025.1698081
  28. Toledo, L., R. (2022). Dynamics of P under redox conditions in rice in tropical soils. Biomedical Journal of Scientific & Technical Research, 44(1), 34889–34894. https://doi.org/10.26717/BJSTR.2022.44.006552 
  29. Lai, Y.-R., & Wang, S.-L. (2025). Effects of Biochar on the Temporal Dynamics and Vertical Distribution of Iron and Phosphorus Under Soil Submergence. Agronomy, 15(6), 1394. https://doi.org/10.3390/agronomy15061394 
  30. Greger, M., Landberg, T., & Vaculík, M. (2018). Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Plants, 7(2), 41. https://doi.org/10.3390/plants7020041 
  31. Li, Y., Chen, M., Liu, X., & Huo, Z. (2026). Redox-mediated Fe-P coupling modulates phosphorus releasing in paddy soils: Hydrological controls under water-saving irrigation. Journal of Contaminant Hydrology, 276, 104774. https://doi.org/10.1016/j.jconhyd.2025.104774 
  32. Luo, D., Wang, L., Nan, H., Cao, Y., Wang, H., Kumar, T. V., & Wang, C. (2023). Phosphorus adsorption by functionalized biochar: a review. Environmental Chemistry Letters, 21(1), 497-524. https://doi.org/10.1007/s10311-022-01519-5 
  33. Zhang, L., Chang, L., Liu, H., Puy Alquiza, M. de J., & Li, Y. (2025). Biochar application to soils can regulate soil phosphorus availability: A review. Biochar. Advance online publication. https://doi.org/10.1007/s42773-024-00415-1 
  34. Qin, S., Rong, F., Zhang, M., Su, G., Wang, W., Wu, L., Wu, A., & Chen, F. (2023). Biochar Can Partially Substitute Fertilizer for Rice Production in Acid Paddy Field in Southern China. Agronomy, 13(5), 1304. https://doi.org/10.3390/agronomy13051304
  35. Nkoh, J. N., Baquy, M. A.-A., Mia, S., Shi, R., Kamran, M. A., Mehmood, K., & Xu, R. (2021). A Critical-Systematic Review of the Interactions of Biochar with Soils and the Observable Outcomes. Sustainability, 13(24), 13726. https://doi.org/10.3390/su132413726 
  36. Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy, 11(5), 993. https://doi.org/10.3390/agronomy11050993 
  37. Teng, X., Huang, D., Zhi, Y., Li, Y., Dong, D., Wu, X., Wang, Y., Jiang, Z., Huang, H., Tang, Y., Liu, D., & Xu, W. (2025). Effects of biochar on soil properties as well as available and TCLP-extractable Cu contents: A global meta-analysis. Scientific Reports, 15, 32853. https://doi.org/10.1038/s41598-025-18170-z 
  38. Huang, W., Jia, Y., Niu, C., Zhang, H., Wang, Y., & Feng, C. (2024). Effects of carbon-based modified materials on soil water and fertilizer retention and pollution control in rice root zone. Sustainability, 16(16), 6750. https://doi.org/10.3390/su16166750 
  39. Xu, P., Gao, Y., Cui, Z., Wu, B., Yan, B., Wang, Y., Zaitongguli, K., Wen, M., Wang, H., Jing, N., Wang, Y., Chao, C., & Xue, W. (2023). Research progress on effects of biochar on soil environment and crop nutrient absorption and utilization. Sustainability, 15(6), 4861. https://doi.org/10.3390/su15064861
  40. He, W., Zhang, J., Gao, W., Chen, Y., & Wei, Z. (2025). Enhancing phosphorus availability and dynamics in acidic soils through rice straw biochar application: A sustainable alternative to chemical fertilizers. Frontiers in Sustainable Food Systems, 9, 1506609. https://doi.org/10.3389/fsufs.2025.1506609  
  41. Peng, J., Han, X., Li, N., Chen, K., Yang, J., Zhan, X., Luo, P., & Liu, N. (2021). Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil. Biochar, 3, 367–379. https://doi.org/10.1007/s42773-021-00090-6 
  42. Stopa, W., Wróbel, B., Paszkiewicz-Jasińska, A., & Strzelczyk, M. (2023). Effect of Biochar Application and Mineral Fertilization on Biomass Production and Structural Carbohydrate Content in Forage Plant Mixture. Sustainability, 15(19), 14333. https://doi.org/10.3390/su151914333 
  43. Keteku, A.K., Amegbor, I.K., Yeboah, S. et al. Sustaining Productivity while Reducing Methane Emission in Calcareous Soils: Implications of Combining Inorganic Fertilizer and Biochar. Int. J. Plant Prod. 19, 141–153 (2025). https://doi.org/10.1007/s42106-024-00325-z 
  44. An, N., Zhang, L., Liu, Y., Shen, S., Li, N., Wu, Z., Yang, J., Han, W., & Han, X. (2022). Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere, 298, 134304. https://doi.org/10.1016/j.chemosphere.2022.134304 
  45. Glaser, B., & Lehr, V. I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific reports, 9(1), 9338. https://doi.org/10.1038/s41598-019-45693-z  
  46. Jin, J., Fang, Y., He, S., Liu, Y., Liu, C., Li, F., Khan, S., Eltohamy, K. M., Liu, B., & Liang, X. (2023). Improved phosphorus availability and reduced degree of phosphorus saturation by biochar-blended organic fertilizer addition to agricultural field soils. Chemosphere, 317, 137809. https://doi.org/10.1016/j.chemosphere.2023.137809 
  47. Zhang, G., Li, X., Gao, S., Li, J., & Gong, C. (2025). Effects of combined application of biochar and organic fertilizer on soil improvement. In M. Jradi et al. (Eds.), Proceedings of the 2025 7th International Conference on Civil Engineering, Environment Resources and Energy Materials (CCESEM 2025), Advances in Engineering Research (Vol. 281, pp. 333–339). Atlantis Press. https://doi.org/10.2991/978-94-6463-902-5_32  
  48. Du, M., Zhang, W., Gao, J., Liu, M., Zhou, Y., He, D., Zhao, Y., & Liu, S. (2022). Improvement of Root Characteristics Due to Nitrogen, Phosphorus, and Potassium Interactions Increases Rice (Oryza sativa L.) Yield and Nitrogen Use Efficiency. Agronomy, 12(1), 23. https://doi.org/10.3390/agronomy12010023 
  49. Liu, Y., Gao, J., Zhao, Y., & others. (2024). Effects of different phosphorus and potassium supply on the root architecture, phosphorus and potassium uptake, and utilization efficiency of hydroponic rice. Scientific Reports, 14, 21178. https://doi.org/10.1038/s41598-024-72287-1 
  50. Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24(12), 12700–12712. https://doi.org/10.1007/s11356-017-8904-x 
  51. Yuan, X., Gu, X., Liang, R., Ban, G., Ma, L., He, T., & Wang, Z. (2024). Comparing combined application of biochar and nitrogen fertilizer in paddy and upland soils: Processes, enhancement strategies, and agricultural implications. Science of The Total Environment, 933, 173160. https://doi.org/10.1016/j.scitotenv.2024.173160 
  52. Li, Y., Wang, J., Lu, J., Feng, Y., Li, J., Guo, Z., Lin, X., & Han, Y. (2025). Effects of combined application of compound fertilizer and biochar on absorption and utilization of phosphorus by wheat. PeerJ, 13, e20308. https://doi.org/10.7717/peerj.20308 
  53. Ma, D., Wang, Y., Zheng, T., Zhou, Q., & Sheng, J. (2025). Synergy of biochar and organic fertilizer reduces phosphorus leaching. Agronomy, 15(11), 2528. https://doi.org/10.3390/agronomy15112528 
  54. Yan, B., Zhang, Y., Wang, Y., Rong, X., Peng, J., Fei, J., & Luo, G. (2023). Biochar amendments combined with organic fertilizer improve maize productivity and mitigate nutrient loss by regulating the C–N–P stoichiometry of soil, microbiome, and enzymes. Chemosphere, 324, 138293. https://doi.org/10.1016/j.chemosphere.2023.138293