Evaluation of Biopesticide (Urtica spp.) Against Insect Pests and Diseases of Sweet Potato for Food Security
Abstract:
Background: The sweetpotato weevil and sweetpotato virus disease (SPVD) are major biotic constraints that completely devastate sweetpotato fields and cause 50 – 100 % yield losses. Management includes cultural practices, tolerant varieties, chemical pesticides and integrated management strategies. Botanicals are gaining popularity in Integrated Pest and Disease Management strategies. Their insecticidal and fungicidal activities, biodegradability and safety increase their probability as alternatives to chemical pesticides. Urtica spp. are known for their insecticidal properties, but their efficacy in the management of the sweetpotato weevil and SPVD has not been documented.
Objective: A field trial was conducted to assess the efficacy of Urtica spp. (Adamfo Pa) against sweetpotato pests and diseases in the forest and savannah transition agroecological zones of Ghana in 2025.
Method: A Split-plot design with three replications was used. Three different rates of the extract, reference fungicide (Mancozeb WP) and biopesticide (Bypel), plus a control, were tested on Cylas sp. and SPVD susceptible sweetpotato variety.
Results: No disease incidence was recorded. The test product at the application rate of 500 ml/100 L of water per week was effective in reducing pest infestation and damage on the leaves and storage roots. It was also found to be efficacious in minimising sweetpotato storage root damage and increasing yield.
Conclusion: The study confirms that Urtica sp. extracts exhibit insecticidal and fungicidal properties that act as insect repellents or growth inhibitors. It is certified for use on carrots, beans, potatoes and strawberries, and recently extended to sweetpotatoes due to the outcome of this study.
KeyWords:
Biopesticide, Cylas sp, Food security, Sweetpotato, Urtica spp.
References:
- Adjei-Gyapong, T., & Asiamah, G. (2000). The interim Ghana soil classification system and its relation with the World Reference Base for Soil Resources. FAO, Rome.
- Adikini, S., Mukasa, S. B., Mwanga, R. O. M., & Gibson, R. W. (2016). Effects of Sweet potato feathery mottle virus and Sweetpotato chlorotic stunt virus on the yield of sweet potato in Uganda. Journal of Phytopathology, 164(3), 242–254.
- Adero, J., Akongo, G. O., Yada, B., Byarugaba, D. K., Kitavi, M., Bua, B., Yencho, G. C., & Otema, M. A. (2024). Sweet potato virus disease and its associated vectors: Farmers’ knowledge and management practices in Uganda. Journal of Agricultural Science, 16(7), 83–95.
- Adu, S. V., Asiamah, G., & Gaisie, E. (2021). Soils of Ghana. Council for Scientific and Industrial Research (CSIR) – Soil Research Institute, Kumasi, Ghana.
- Akazawa, T., & Uritani, I. (1960). Isolation of ipomeamarone and two coumarin derivatives from sweet potato roots injured by the weevil, Cylas formicarius elegantulus. Archives of Biochemistry and Biophysics, 88(1), 150–156.
- Alemu, Z., Seid, N., & Getahun, S. (2025). Evaluation of insecticides against the sweet potato weevil, Cylas spp. (Insecta; Coleoptera) in Ethiopia. International Journal of Tropical Insect Science, 45, 2105–2114. https://doi.org/10.1007/s42690-025-01578-5
- Anjali, J. (2020). Evaluation of synthetic insecticides for the management of sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae). Journal of Root Crops, 45(2), 48–54.
- Asiedu, R., & Aiyejagboyin, T. (2004). Integrated management of sweet potato weevil (Cylas spp.) in West Africa. International Potato Center (CIP) Technical Bulletin.
- Barkessa, M. K. E. (2018). A review on sweet potato (Ipomea batatas) viruses and associated diseases. International Journal of Research in Agriculture and Forestry, 5(1), 1–10.
- 10. Carneiro, E., Silva, L., Maggioni, K., dos Santos, V., Rodrigues, T., Reis, S., Pavan, B. (2014). Evaluation of insecticides targeting control of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). American Journal of Plant Science, 5, 2823–2828.https://doi.org/10.4236/ajps.2014.518298.
- Chopra, J., Sahoo, P., Sow, P. K., & Rangarajan, V. (2025). Investigating the wettability of neem oil nanoemulsion as a green pesticide on leaf surfaces: Optimizing formulation, assessing stability, and enhancing wettability. RSC Advances, 15(11), 8645–8656. https://doi.org/10.1039/D5RA00556F
- Essilfie, M. E., Dapaah, H. K., Tevor, J. W., & Darkwa, K. (2016). Number of nodes an part of vine cutting effect on the growth and yield of sweet potato (Ipomoea batatas L.) in the transitional zone of Ghana. International Journal of Plant & Soil Science, 9(5), 1–14.
- European Food Safety Authority (EFSA). (2021). Outcome of the consultation with Member States and EFSA on the basic substance application for approval of Urtica spp. EFSA Supporting Publications, 18(3), 1–20.
- Fenibo, E. O., & Matambo, T. (2025). Biopesticides for sustainable agriculture: Feasible options for adopting cost-effective strategies. Frontiers in Sustainable Food Systems, 9, Article 1657000. https://doi.org/10.3389/fsufs.2025.1657000
- Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage Publications.
- Food and Agriculture Organization of the United Nations (FAO). (1990). Guidelines for soil description (3rd ed.). FAO, Rome.
- Food and Agriculture Organization (FAO). (2013). FAOSTAT statistical databases. Retrieved from http://faostat.fao.org/site/567/default.aspx
- Ghimire, S., Thapa, R., Kurunju, K., & KC, S. (2022). Urtica dioica: An ostracized neglected plant in agriculture serving as a medicinal and insecticidal property. Tropical Agrobiodiversity, 3(1), 45–56. https://doi.org/10.26480/trab.01.2022.08.11 (doi.org in Bing)
- Igwe, K. C., Osipitan, A. A., Afolabi, C. G., & Lawal, O. I. (2021). Assessment of insect pests of sweet potato (Ipomoea batatas L.) and control with biopesticides. International Journal of Pest Management, 69(3), 315–323.
- International Potato Center (CIP). (2020). Sweetpotato: A food security crop for low-income countries. Lima, Peru: International Potato Center.
- International Fertilizer Development Center (IFDC). (2025). Biopesticide derived from fresh neem leaves: Technical factsheet. IFDC. https://ifdc.org/wp-content/uploads/2025/12/Bio-pesticide-with-Neem-English.pdf
- Jaoko, V., Nji, T. T. C., Backx, S., Mulatya, J., Van den Abeele, J., Magomere, T., Olubayo, F., Mangelinckx, S., Werbrouck, S. P. O., & Smagghe, G. (2020). The phytochemical composition of Melia volkensii and its potential for insect pest management. Plants, 9(2), 143. https://doi.org/10.3390/plants9020143.
- Kabi, S., Ocenga-Latigo, M. W., Smit, N. E. J. M., Stathers, T. E., & Rees, D. (2001). Influence of sweet potato rooting characteristics on infestation and damage by Cylas spp. African Crop Science Journal, 9(2), 165–174.
- Kandori, I., Kimura, T., Tsumuki, H., & Sugimoto, T. (2006). Cold tolerance of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), from the Southwestern Islands of Japan. Applied Entomology and Zoology, 41(2), 217–226.
- Karyeija, R. F., Kreuze, J. F., Gibson, R. W., & Valkonen, J. P. T. (2000). Synergistic interactions of a potyvirus and a crinivirus in sweet potato plants. Virology, 269(1), 26–36. https://doi.org/10.1006/viro.2000.0206.
- Keyser, C. A., et al. (2024). Tailoring IPM plans to fight a cloaked pest: Helping smallholder farmers combat the sweet potato weevil in Sub-Saharan Africa. CABI Agriculture and Bioscience, 5(12), 1–15.
- Kibrom, B. (2015). Destitution, biology, yield loss and management of sweet potato weevils (Cylas formicarius Fabricius) in Ethiopia. Journal of Biology, Agriculture and Healthcare, 5(22), 65–72.
- Kumar, N., & Khurana, S. M. P. (2025). An application of biopesticides in control of pest and crop protection: An eco-friendly management. In R. Kumar, M. S. de Oliveira, E. H. de Aguiar Andrade, D. C. Suyal, & R. Soni (Eds.), Biorationals and Biopesticides: Pest Management (pp. 97–118). Springer. https://doi.org/10.1007/978-981-97-8739-5_6
- Kyereko, W. T., Hongbo, Z., Amoanimaa-Dede, H., Meiwei, G., & Yeboah, A. (2024). The major sweet potato weevils; management and control: A review. Entomology, Ornithology & Herpetology: Current Research, 13(1), 1–9.
- 30. Maaroufi, H., El Amrani, A., & El Mtili, N. (2017). Phytochemical screening, antioxidant, and antimicrobial activities of Urtica urens extracts. Journal of Applied Biosciences, 117, 11643–11652. https://doi.org/10.4314/jab.v117i1.6.
- Mao L, Henderson G (2007). Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against Formosan subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 100(3):866- 870.
- Mawcha, K. T., Kinyanjui, G., Simiyu, S. W., Babalola, O. O., & Ndolo, D. O. (2024). Biopesticides for sustainable agriculture: A review of their role in integrated pest management. In S. Kumar (Ed.), Insecticides in Pest Control – Impact, Challenges and Strategies. IntechOpen. https://doi.org/10.5772/intechopen.1006277
- MDPI Agrochemicals Journal. (2023). Antifungal properties of Urtica dioica against six phytopathogenic fungi. Agrochemicals, 2(4), 233–245.
- Mitra, S., Banerjee, S., & Roy, S. (2022). aGROdet: A novel framework for plant disease detection and leaf damage estimation. In IFIP International Internet of Things Conference (pp. 3–22). Springer. https://doi.org/10.1007/978-3-031-21388-0_1
- Nta, A. I., & Oku, E. E. (2019). Effects of Dennettia tripetala (Backer), Xylopia aethiopica (Dunal), and Aframomum melegueta Schum oils against the African sweet potato weevil, Cylas puncticollis (Boheman). Asian Journal of Research in Zoology, 2(1), 1–9.
- National Variety Release and Registration Committee (NVRRC). (2019). Catalogue of crop varieties released and registered in Ghana. Directorate of Crop Services, Ministry of Food and Agriculture, Accra, Ghana, pp. 64–65. Retrieved from www.mofa.gov.gh
- Ochieng, L. A., Githiri, S. M., Nyende, B. A. and Murungi, L. K. (2017). A survey of farmers’ perceptions and management strategies of the sweet potato weevil in homa bay county, kenya. African Journal of food, Agriculture, Nutrition and Development,17(3):12157-12178.DOI: 10.18697/ajfand.79.16330.
- Perveen, K. (2024). Neem’s promise: The way to a sustainable future and eco-friendly biopesticides. International Journal of Science and Research Archive, 11(2), 1073–1082. https://ijsra.net/sites/default/files/IJSRA-2024-0532.pdf
- Pillai, P., Suresh, P., & Kumar, R. (2020). Antimicrobial activity of Urtica urens extracts against plant pathogens. International Journal of Pharmaceutical Sciences and Research, 11(5), 2345–2352. https://doi.org/10.13040/IJPSR.0975-8232.11(5).2345-52.
- Pitiki, M., Wiseman, B., Wong, L., Sipes, B., Silva, J., Uyeda, J., Mandhar, R., & Wang, K.-H. (2023). Sustainable pest and soil health management for sweet potato production. University of Hawaii at Mānoa. Retrieved from Organic Transition
- Prasad, R., Reddy, N. D., Narayan, A., Alam, T., & Giri, G. S. (2022). Field efficacy of biopesticide insecticides against sweet potato weevil, Cylas formicarius Fab. (Coleoptera: Brentidae). The Pharma Innovation Journal, SP-11(7), 3243–3246
- Raman, K. V., & Alleyne, E. H. (1991). Biology and management of the sweet potato weevil, Cylas formicarius. FAO Plant Protection Bulletin, 39(1), 21–27.
- Ratto, F., Bruce, T., Chipabika, G., Mwamakamba, S., Mkandawire, R., Khan, Z., Mkindi, A., Pittchar, J., Chidawanyika, F., Sallu, S. M., Whitfield, S., Wilson, K., & Sait, S. M. (2022). Biological control interventions and biopesticide pesticides for insect pests of crops in sub-Saharan Africa: A mapping review. Frontiers in Sustainable Food Systems, 6, 883975. https://doi.org/10.3389/fsufs.2022.883975
- Ren, L., Zheng, G., Chen, B., He, L. Liao, Y., and Chen, B. (2020). Evaluation of ten biopesticide insecticides against the sweet potato Weevil, Cylas formicarius (Fabricius, 1798) (Coleoptera: Brentidae). African Journal of Agricultural Research. Vol. 16(11), pp. 1531-1539, November, 2020 DOI: 10.5897/AJAR2020.15054 http://www.academicjournals.org/AJAR.
- Sharma, R., & Singh, P. (2020). Urtica species extracts as potential insecticidal agents: Repellent and growth inhibitory properties. Tropical Agrobiodiversity, 1(1), 8–11. https://doi.org/10.26480/trab.01.2020.08.11
- Sibiya, M., & Sumbwanyambe, M. (2019). An algorithm for severity estimation of plant leaf diseases by the use of colour threshold image segmentation and fuzzy logic inference. AgriEngineering, 1(2), 15–32.https://doi.org/10.3390/agriengineering1020015
- Stathers, T., Namanda, S., Mwanga, R.O.M., Khisa, G. and Kapinga, R. (2005). Manual for sweet potato Integrated Production and Pest Management Farmer Field Schools in Sub-Sahara Africa. International Potato center Kampala, Uganda. 168 pp.
- Tarekegn F, Emana G, Waktole S (2014b) Integrated management of sweet potato weevil, Cylas puncticollis (Boheman) (Coleoptera: Curculionidae) in Eastern Ethiopia. J. Entomol 13:1812–5670
- Thapa, K.C., S., R., Lamsal, A., Ghimire, S., Kurunju, K., & Shrestha, P. (2022). Urtica dioica: An ostracized neglected plant in agriculture serving as a medicinal and insecticidal property. Tropical Agrobiodiversity, 3(1), 45–56.
- Thottappilly, G. (2009). Introductory remarks. In G. Loebenstein & G. Thottappilly (Eds.), The sweet potato (pp. 1–7). Springer Science+Business Media B.V. https://doi.org/10.1007/978-1-4020-9475-0-1
- Tigabu, E., Alemu, T., & Woldegiorgis, G. (2015). Sweetpotato as a food and income security crop in Sub-Saharan Africa. Journal of Root Crops, 41(2), 27–36.
- Uğur, Y., Menevşe, İ. N., Dündar, M., Karci, H., Zengin, R., & Güzel, A. (2025). Comparative chemical and biological evaluation of Urtica dioica extracts obtained by metha nol and hexane: Antioxidant, cytotoxic, apoptotic, and antimicrobial potentials. BMC Complementary Medicine and Therapies, 25, Article 5211. https://doi.org/10.1186/s12906-025-05211-3.
- Zar, J. H. (2010). Biostatistical analysis (5th ed.). Pearson Prentice Hall.
- Zhang, K., Lu, H., Wan, C., Tang, D., Zhao, Y., Luo, K., Li, S., & Wang, J. (2020). The spread and transmission of sweet potato virus disease (SPVD) and its effect on gene expression profile in sweet potato. Plants, 9(4), 492. https://doi.org/10.3390/plants904049.