Metabolite Profiles and Bioactivity in Leaf Development Stages of Curry (Murraya koenigii (L.) Spreng)

Author's Information:

Juswardi Juswardi*

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Salsabila Ulya

Biology Program Study, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Nina Tanzerina

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Sarno Sarno

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Harmida Harmida

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Mustafa Kamal

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Endri Junaidi

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Indonesia

Vol 05 No 02 (2026):Volume 05 Issue 02 February 2026

Page No.: 89-95

Abstract:

Murraya koenigii (L.) Spreng, often known as Curry or Kari, has long been used in traditional medicine as a multi-potential medicinal plant and as a food seasoning. Curry possesses bioactivity and is known to be active as an antitumor, antioxidant, antimutagenic, anti-inflammatory, antidiabetic, antidysenteric, stimulant, and antibacterial agent. This bioactivity depends on its metabolite profile, which changes during development. This study aimed to determine the metabolite profile and bioactivity of Curry leaves across developmental stages using GC-MS metabolomic profiling. The results of the research revealed a total of 35 with 19 classified as terpenoids, 6 as esters, 4 as organic acids, 1 to the fatty acid group, and 5 to the unknown class from compounds in young, mature, and old Curry leaves. Caryophyllene was the dominant compound in young, mature and old leaves, with anti-inflammatory, antibacterial, anticancer, and germ-fighting activities. In mature leaves, the dominant compound was 1-Methyl-pyrrolidine-2-carboxylic acid, which functions as a moisturizing agent and humectant agent. Referring to the variety of compounds and bioactivities found in Temurai leaves, they have the opportunity to be developed as medicinal ingredients.

KeyWords:

Murraya koenigii (L.) Spreng, metabolite profile, bioactivity, leaf development.

References:

  1. Api, A.M., and Ford R. A. 2019. Evaluation of the oral subchronic toxicity of HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran) in the rat. Toxicology Letter. 111(1-2: 143-149.  https://doi.org/10.1016/S0378-4274(99)00175-7
  2. Aziman, N., Abdullah, N., Mohd Noor, Z., Zulkifli, K. S., and Wan Kamarudin, W. S. 2012. Phytochemical constituents and in vitro bioactivity of ethanolic aromatic herb extracts. Sains Malaysiana. 41(11): 1437-1444.
  3. Bawa, I.G., and Perbhawa, I.G. 2020. Analysis of antifungal terpenoid compounds in the active fraction of  cempaka putih (Michelia alba) bark extract using the gas chromatography-mass spectroscopy method (Ina). Chemistry, Environmental Science 14(2). 142-146. https://doi.org/10.24843/jchem.2020.v14.i02.p06
  4.  Blanco, A. and Blanco, G.  2017.  Medical Biochemistry. Chapter 13 – Metabolism. 275-281pp. Sciencedirect.com/book. https://doi.org/10.1016/B978-0-12-803550-4.00013-6
  5. Chauhan, B., Dedania, J., and Mashru, R. C. 2017. Review on Murraya koenigii: versatile role in management of human health. World Journal Of Pharmacy And Pharmaceutical Sciences. 6(3): 476-493. https://doi.org/10.20959/wjpps20172-874
  6. Erindyah, R.W., and Maryati. 2002. Antibacterial activity of pine essential oil against S. aureus and E.coli. Jurnal Farmasi Indonesia. Pharmacon. 4(1): 20-24.
  7. Fadila, A. R., Mariani, Y., and Yusro, F. 2020. Curry leaf essential oil (Murraya koenigii (L.) Spreng) as an inhibitor of the growth of Streptococcus pyogenes and Shigella dysenteriae bacteria (Ina) Jurnal Biologi Tropis. 20(2): 155-160. https://doi.org/10.29303/jbt.v20i2.1756
  8. Gaich, T. and Mulzer J. 2012.  α-Phellandrene in Comprehensive Chirality eds. E. M. Carreira and H. Yamamoto. Elsevier Ltd.
  9. Hameed, I. H., Mohammad, G. J., and Kadhim, M. J. 2016. In vitro antibacterial, antifungal and phytochemical analysis of methanolic fruit extract of Cassia fistula. Oriental Journal of Chemistry. 32. https://doi.org/10.13005/ojc/320307
  10. Heliawati, L. 2018. Organic Chemistry of Natural Materials. Bogor: Pascasarjana. pp 3-22. 
  11. Julianto, T.S. 2019. Phytochemistry Review of Secondary Metabolites and Phytochemical Screening. (Ina) Yogyakarta: UII. pp. 35-40. https://chemistry.uii.ac.id/Tatang/Fitokimia.pdf
  12. Juswardi, J., & Ulya, S. (2023). Content of chlorophyll, antioxidants, and metabolite compounds in the leaf development stage of Murraya koenigii (L.) Spreng. Jurnal Biologi Tropis23(3), 225–230. https://doi.org/10.29303/jbt.v23i3.4869
  13. Kalasariya, H. S., Pereira, L., and Patel, N. B. 2023. Comprehensive phytochemical analysis and bioactivity evaluation of Padina boergesenii: unveiling its prospects as a promising cosmetic component. Marine Drugs, 21(7), 385. https://doi.org/10.3390/md21070385
  14. Karunia, S.D., Supartono and Sumarni, W. 2017. Analysis of antibacterial properties of soursop seed extract (Annona squamosa L.) with organic solvents (Ina). Indonesian Journal of Chemical Science. 6(1): 56-60. https://doi.org/10.15294/ijcs.v6i1.11288
  15. Kuc, J. 1995. Phytoalexins, stress metabolism, and disease resistance. Plants Annu. Rev. Phytopathol 33: 275-297. https://doi.org.10.1146/ANNUREV.PY.33.090195.001423
  16. Lunggela, F. B., Isa, I., and Iyabu, H. (2022). Analysis of  the  content of  essential  oils in langsat  rind  using gas  chromatography-mass spectrometer  method (Ina). Jambura Journal  of Chemistry, 4(1), 10–16.
  17. Maharani, R., and Fernandes, A. 2021. Phytochemical and gc-ms profile of black betel leaves (Piper betle L.) from the Labanan KHDTK Area, Berau Regency (Ina). Majalah Farmasi dan Farmakologi. 25(1):11-14. . https://doi.org/10.20956/mff.v25i1.11966
  18. Mahardika, I.B.P., Puspawati, N.M., and Widihati, I.A.G. 2014. Identification of antifeedant active compounds from pangi leaf extract (Pangium sp) and testing its activity against cabbage caterpillars (Plutella xylostella). Jurnal Kimia. 8(2): 213-219
  19. Maulidya, R., Aisyah, Y., Haryani, S. 2016. The effect of flower type and picking time on the physicochemical properties and antibacterial activity of Cananga flower rssential oil (Cananga odorata) (Ina). Jurnal Teknologi dan Industri Pertanian Indonesia. 8(2): 53-60. https://doi.org/ 10.17969/jtipi.v8i2.6398.
  20. Ojinnaka, C. M., Nwachukwu, K. I., and Ezediokpu, M. N. 2016. The chemical constituents and bioactivity of the seed (fruit) extracts of Buchholzia coriacea Engler (Capparaceae). Journal of Applied Sciences & Environmental Management, 19(4), 795–801. https://doi.org/10.4314/jasem.v19i4.29
  21. Padmini, E.A., Valarmathi, A., and Rani, M.U. 2010. Comparative analysis of chemical composition and antibacterial activities of Menthaspicata and Camellia sinennsis. Asian J. Exp. Biol. Sci.1(4): 772-781.
  22. Pakki, E., Rewa, M., and Irma, N. 2019. The effectiveness of isopropyl myristate as enhancin agent in the antioxidant cream of Kasumba Turate seed (Carthamus tincorius L.) Journal of Pharmaceutical and Medicinal Sciences. 4(2): 44-50
  23. Pratiwi, A. and Salimah, I. 2020. Antioxidant and antimicrobial activity of leson flower essential oil (Ina) . Al-Kauniyah: Jurnal Biologi 13 (2): 139-46. https://doi.org/10.15408/kauniyah.v13i2.9966.
  24. Setiawati, T., Saragih, I. A., Nurzaman, M. and Mutaqin, A. Z. 2016. Analysis of chlorophyll content and leaf area of ​​Lampeni (Ardisia humilis Thunbergh) at different development levels in the Pengandaran Nature Reserve (Ina). Proceedings of the Mathematics and Natural Sciences Seminar on the Role of Basic Science Research in Supporting Sustainable Development. Universitas Padjajaran: Jatinangor.
  25. Setyaningsih, D., Pandji, C., and Perwatasari, D.D. 2014. Study of antioxidant and antimicrobial activity of fractions and extracts from Jatropha curcas L. leaves and twigs and their utilization in personal hygiene products (Ina). AGRITECH. 34(2): 126-135. https://doi.org/10.22146/agritech.9502.
  26. Silva, R. O., Sousa, F. M., Damasceno, S. R., Carvalho, N. S., Silva, V. G., Oliveira, F. R., and Medeiros, J. V. 2014. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundamental & Clinical Pharmacology. 28(4): 455-464. https://doi.org.10.1111/fcp.12049.
  27. Soleh, and Magantara S. 2019. Morphological characteristics of the kencur plant and pharmacological activity (Kaempferia galanga l.) review. Farmaka. 17 (2).256-263.  https://doi.org/10.24198/jf.v17i2.22089.g11687
  28. Sukma, F. F., Sahara, D., Ihsan, F. N., Halimatussakdiah, Wahyuningsih, P., and Amna, U. 2018. Phytochemical screening of “Curry” leaf extract (Murraya koenigii (L.) Spreng) Langsa city, Aceh (Ina). Jurnal Jeumpa. 5(1): 34-39.
  29. Sumantri, I., Hermawan G.P., and Laksono H. 2014. Extraction of soursop leaves (Annona muricata L.) using ethanol solvent (Ina), Momentum, 10 (1): 34-37
  30. Sumenda, L. 2011. Analysis of chlorophyll content of Mango leaves (Mangifera indica L.) at different leaf development stages (Ina). Jurnal Bios Logos. 1(1): 20-24. Doi: https://doi.org/10.35799/jbl.1.1.2011.372.
  31. Tan, S.P., Ali, A.A., Nafiah, M.A., Amna, U., Akma, S., And Ahmad, K. 2017. Terpens and phenolic compounds of Murraya koenigii. Chemistry of Natural Compounds. 53(5): 980-981. https://doi.org/10.1007/s10600-017-2177-y
  32. Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Tiyajamorn, T.; Bharathi, M., and Chaiyasut, C. 2022. A narrative review on the bioactivity and health benefits of alpha-phellandrene. Sci. Pharm. 90(57): 1-26. https://doi.org/10.3390/scipharm90040057
  33. Theron, M.M. and Lues, J.F.R. 2011. Organic Acids and Food Preservation. CRC Press, Boca Raton, FL, 340 p. https://doi.org/10.1201/9781420078435
  34. Wang, Y., Dai, A., Huang, S., Kuo, S., Shu, M., Tapia, C. P., Yu, J., Two, A., Zhang, H., Gallo, R. L., and Huang, C. M. 2014. Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Beneficial microbes5(2), 161–168. https://doi.org/10.3920/BM2013.0031
  35. Warsinah, Kusumawati, E, and Sunarto 2011. Identification of compound antifungi of Kecapi (Sandoricum koetjape). stem and activity to Candida albicans. Majalah Obat Tradisional, 16(3), 170-178.
  36. Widyasari, A.R. 2008. Characterization and antibacterial test of chemical compounds of n-hexane fractions from the bark of the angsret tree (Spathodea campanulata Beauv(Ina). Sarjana thesis, Universitas Brawijaya. https://repository.ub.ac.id/id/ eprint/151830/1/050801964.pdf
  37. Yunez, S. 2021. Plant family therapeutics: Ocimene. https://www.plant-family.com:-part-ocimene/#: ~:text=The%20study%20evaluated%20the%20effects%