Temperature and pH Effects on High-Methane Biogas Production
DOI:
https://doi.org/10.55677/ijlsar/V03I12Y2024-05Keywords:
Anaerobic co-digestion. Agroindustrial waste. Renewable energy.Abstract
Objective: Biomass is a renewable, widely available, and economically viable energy source for use in anaerobic digestion processes to produce biogas and methane (CH₄). To harness this potential, various technologies have been improved to better reuse organic waste, such as those from the agroindustry, to generate renewable energy and also to contribute to minimizing the environmental risks caused by the improper disposal of these materials. The objective of this study was to define the best operational conditions for the production of biogas and CH₄ from the anaerobic co-digestion of bovine manure, cassava wastewater, and coffee husk.
Methods: All tests showed significant biogas production with at least 80% methane. The statistical tool of experimental design made it possible to identify an inversely proportional relationship between pH and temperature, within the conditions analyzed for these factors.
Results: Thus, it was defined that the combination of an initial pH above 9.5 and a temperature below 35 °C is capable of resulting in a biogas volume > 600 cm³ and CH₄ > 500 cm³. For example, the best experimental performance was obtained with an initial pH of 10.0 and a temperature of 30 °C, which resulted in 798.72 cm³ of biogas and 638.98 cm³ of CH₄ accumulated after 15 days of hydraulic retention time. These best experimental conditions enabled 58.53% removal of chemical oxygen demand and a final pH close to neutrality (6.3).
Conclusion: This represents good fermentation conditions for methanogenic bacteria and confirms the feasibility of using co-digestion of the three evaluated residues.
References
Altoé, L., Costa, J. M., Oliveira Filho, D., Martinez, F. J. R., Ferrarez, A. H., & Viana, L. D. A. (2017). Políticas públicas de incentivo à eficiência energética. Estudos Avançados, 31(89), 285-297. DOI: https://doi.org/10.1590/s0103-40142017.31890022
Barana, A.C., & Cereda, M.P. (2000). Cassava wastewater (manipueira) treatment using a two-phase anaerobic biodigestor. Food Science and Technology 20: 183-186. DOI: https://doi.org/10.1590/S0101-20612000000200010
Bradbury, M.G., Egan, S.V., & Bradbury, J.H. (1999). Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. Journal of the Science of Food and Agriculture, v. 79, n. 4, p. 593-601. DOI: https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4%3C593::AID-JSFA222%3E3.0.CO;2-2
Chala, B., Oechsner H., & Müller, J. (2019). Introducing temperature as variable parameter into kinetic models for anaerobic fermentation of coffee husk, pulp and mucilage. Applied Sciences, 9(3), 412. DOI: https://www.mdpi.com/2076-3417/9/3/412
CIBiogás, Centro Internacional de Energias Renováveis - Biogás. (2022). Panorama do Biogás no Brasil. Relatório Técnico nº 001/2022. Available at: <https://cibiogas.org/wp-content/uploads/2022/04/NT-PANORAMA-DO-BIOGAS-NO-BRASIL-2021.pdf>. Acessed 06 March 2023.
CONAB, Companhia Nacional de Abastecimento (2022a) Análise mensal mandioca, abril de 2022. Available at: <https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-mandioca/item/19296-mandioca-analise-mensal-setembro-2022>. Acessed 18 November 2022.
CONAB, Companhia Nacional de Abastecimento (2022b) Safra brasileira de café. Tabela de dados- estimativas da produção e colheita, maio de 2022. Available at: <https://www.conab.gov.br/info-agro/safras/cafe>. Acessed 20 May 2022.
Costa, R. C., Ramos, M. D. N., Fleck, L., Gomes, S. D., & Aguiar, A. (2022). Critical analysis and predictive models using the physicochemical characteristics of cassava processing wastewater generated in Brazil. Journal of Water Process Engineering, 47, 102629. DOI: https://doi.org/10.1016/j.jwpe.2022.102629
Dima, A. D., Pârvulescu, O. C., Mateescu, C., & Dobre, T. (2020). Optimization of substrate composition in anaerobic co-digestion of agricultural waste using central composite design. Biomass and Bioenergy, 138, 105602. DOI: https://doi.org/10.1016/j.biombioe.2020.105602
Dobre, P., Nicolae, F., & Matei, F. (2014). Main factors affecting biogas production-an overview. Romanian Biotechnological Letters, 19(3), 9283-9296. DOI: http://rombio.eu/vol19nr3/lucr%201_Dobre%20Paul_ Main%20factors%20affecting %20biogas%20production_revistaRBL_2014%20_1_.pdf
Dotto, R. B., & Wolff, D. B. (2012). Biodigestão e produção de biogás utilizando dejetos bovinos. Disciplinarum Scientia| Naturais e Tecnológicas, 13(1), 13-26. DOI: https://periodicos.ufn.edu.br/index.php/disciplinarumNT/article/view/1291
Du, F., Qu, J., Hu, Q., Yuan, X., Yin, G., Wang, L., & Zou, Y. (2021). Maximizing the value of Korshinsk peashrub branches by the integration of Pleurotus tuoliensis cultivation and anaerobic digestion of spent mushroom substrate. Renewable Energy, 179, 679-686. DOI: https://doi.org/10.1016/j.renene.2021.07.053.
Du, N., Li, M., Zhang, Q., Ulsido, M. D., Xu, R., & Huang, W. (2021). Study on the biogas potential of anaerobic digestion of coffee husks wastes in Ethiopia. Waste Management & Research, 39(2), 291-301. DOI: https://doi.org/10.1177/0734242X209396
Feng, K., Li, H., & Zheng, C. (2018). Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresource technology, 270, 180-188. DOI: https://doi.org/10.1016/j.biortech.2018.09.035
Forster-Carneiro, T., Berni, M. D., Dorileo, I. L., & Rostagno, M. A. (2013). Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resources, Conservation and Recycling, 77, 78-88. DOI: https://doi.org/10.1016/j.resconrec.2013.05.007
Guendouz, N., Rezzaz-Yazid, H., Laib, S., & Sadaoui, Z. (2021). Evaluation of the biogas potential of a lignocellulosic residue. Water Science and Technology, 84(8), 1827-1838. DOI: https://doi.org/10.2166/wst.2021.350
Hasan, S. D. M., Giongo, C., Fiorese, M. L., Gomes, S. D., Ferrari, T. C., & Savoldi, T. E. (2015). Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity. Environmental technology, 36(20), 2637-2646. DOI: https://doi.org/10.1080/09593330.2015.1041426
Herrera, A. M., Esteves, E. M., Morgado, C. R., & Esteves, V. P. (2021). Carbon footprint analysis of bioenergy production from cattle manure in the Brazilian central-west. BioEnergy Research, 14, 1265-1276. DOI: https://doi.org/10.1007/s12155-020-10216-6
Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource technology, 100(22), 5478-5484. DOI: https://doi.org/10.1016/j.biortech.2008.12.046
IBGE, Instituto Brasileiro de Geografia e estatística (2021). Diretoria de Pesquisas, Coordenação de Agropecuária, Pesquisa da Pecuária Municipal 2021. Available at : <https://www.ibge.gov.br/explica/producao-agropecuaria/bovinos/br>. Acessed: 16 November 2022.
IBGE, Instituto Brasileiro de Geografia e estatística (2022). Levantamento Sistemático da Produção Agrícola (LSPA), Tabela 2 - Área, Produção e Rendimento Médio - Confronto das safras de 2021 e das estimativas para 2022. Available at: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=resultados>. Acessed: 18 November 2022.
Jaro, R. H., Icalina, M. A. A., Talemporos, R. T., Napiňas, P. M., Potato, D. N. C., Manuel, L. G., ... & Arazo, R. O. (2021). Biogas production from waste pulps of cassava (Manihot esculenta Crantz) via anaerobic digestion. Energy, Ecology and Environment, 6(3), 204-212. DOI: https://doi.org/10.1007/s40974-020-00182-2
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas production and applications in the sustainable energy transition. Journal of Energy, 2022(1), 8750221. DOI: https://doi.org/10.1155/2022/8750221
Kasinath, A., Fudala-Ksiazek, S., Szopinska, M., Bylinski, H., Artichowicz, W., Remiszewska-Skwarek, A., & Luczkiewicz, A. (2021). Biomass in biogas production: Pretreatment and codigestion. Renewable and Sustainable Energy Reviews, 150, 111509. DOI: https://doi.org/10.1016/j.rser.2021.111509
Leite, J.G.B.S., Oliveira, E.A. & Leal, P.L. (2020). Valorização de resíduos agroindustriais para produção de biogás.. In: Anais online do 1° simpósio nacional sobre inovação em engenharia e ciência de alimentos - INECA2020. Anais. Itapetinga(BA) Canal INECA 2020 (YouTube). Available at: < https://www.even3.com.br/anais/ineca2020/286386-valorizacao-de-residuos-agroindustriais-para-producao-de-biogas/ >. Acessed: 05 July 2022.
Lisowyj, M., & Wright, M. M. (2020). A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Reviews in Chemical Engineering, 36(3), 401-421. DOI: https://doi.org/10.1515/revce-2017-0103
Ma, J., Frear, C., Wang, Z. W., Yu, L., Zhao, Q., Li, X., & Chen, S. (2013). A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresource technology, 134, 391-395. DOI: https://doi.org/10.1016/j.biortech.2013.02.014
Ferreira Madeira, J. G., Mendes de Oliveira, E., Oliveira de Araújo, V., val Springer, M., Lopes Cabral, H., Silva Melgaco, H., ... & Rosado Fernandes Neto, A. (2020). Optimum Co‐Digestion Ratio of Cattle Manure and Manipueira in a Single‐Stage Anaerobic Digester for Biogas Production. CLEAN–Soil, Air, Water, 48(12), 2000096.
DOI: https://doi.org/10.1002/clen.202000096
Nasir, A., Bala, K. C., Mohammed, S. N., Mohammed, A., & Umar, I. (2015). Experimental Investigation on the effects of digester size on biogas production from cow dung.
DOI: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/3592
OIC, Organização Internacional do Café (2021). Relatório sobre o mercado de café, out. 2021. Available at: http://www.consorciopesquisacafe.com.br/images/stories/noticias/2021/dezembro/relatorio_oic_outubro_2021.pdf. Acessed: 25 May 2022
Oliveira, L. S., & Franca, A. S. (2015). An overview of the potential uses for coffee husks. Coffee in health and disease prevention, 283-291. DOI: https://doi.org/10.1016/B978-0-12-409517-5.00031-0
Peres, S., Monteiro, M. R., Ferreira, M. L., do Nascimento Junior, A. F., & de Los Angeles Perez Fernandez Palha, M. (2019). Anaerobic digestion process for the production of biogas from cassava and sewage treatment plant sludge in Brazil. BioEnergy Research, 12, 150-157. DOI: https://doi.org/10.1007/s12155-018-9942-z
Prabhu, A. V., Raja, S. A., Avinash, A., & Pugazhendhi, A. (2021). Parametric optimization of biogas potential in anaerobic co-digestion of biomass wastes. Fuel, 288, 119574. DOI: https://doi.org/10.1016/j.fuel.2020.119574
Qadir, S. A., Tahir, F., & Al-Fagih, L. (2020, December). Impact of fossil fuel subsidies on renewable energy sector. In Proceedings of the 12th International Exergy, Energy and Environment Symposium (IEEES-12).
Rashedi, A., Khanam, T., & Jonkman, M. (2020). On reduced consumption of fossil fuels in 2020 and its consequences in global environment and exergy demand. Energies, 13(22), 6048. DOI: https://doi.org/10.3390/en13226048
Rasi, S., Veijanen, A., & Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375-1380. DOI: https://doi.org/10.1016/j.energy.2006.10.018
Risberg, K., Sun, L., Levén, L., Horn, S. J., & Schnürer, A. (2013). Biogas production from wheat straw and manure–impact of pretreatment and process operating parameters. Bioresource Technology, 149, 232-237. DOI: https://doi.org/10.1016/j.biortech.2013.09.054
Rodrigues, M. I., & Iemma, A. F. (2005). Planejamento de experimentos e otimização de processos: uma estratégia sequencial de planejamentos. DOI: https://repositorio.usp.br/item/001692759
Santos, L. C. dos, Adarme, O. F. H., Baêta, B. E. L., Gurgel, L. V. A., & de Aquino, S. F. (2018). Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresource Technology, 263, 601-612. DOI: https://doi.org/10.1016/j.biortech.2018.05.037
Sarker, S., Lamb, J. J., Hjelme, D. R., & Lien, K. M. (2019). A review of the role of critical parameters in the design and operation of biogas production plants. Applied Sciences, 9(9), 1915. DOI: https://doi.org/10.3390/app9091915
Selvankumar, T., Sudhakar, C., Govindaraju, M., Selvam, K., Aroulmoji, V., Sivakumar, N., & Govarthanan, M. (2017). Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp. 3 Biotech, 7, 1-8. DOI: https://doi.org/10.1007/s13205-017-0884-5
Senés‐Guerrero, C., Colón‐Contreras, F. A., Reynoso‐Lobo, J. F., Tinoco‐Pérez, B., Siller‐Cepeda, J. H., & Pacheco, A. (2019). Biogas‐producing microbial composition of an anaerobic digester and associated bovine residues. MicrobiologyOpen, 8(9), e00854. DOI: https://doi.org/10.1002/mbo3.854
Siqueira, M. U., Contin, B., Fernandes, P. R. B., Ruschel-Soares, R., Siqueira, P. U., & Baruque-Ramos, J. (2022). Brazilian agro-industrial wastes as potential textile and other raw materials: a sustainable approach. Materials Circular Economy, 4(1), 9. DOI: https://doi.org/10.1007/s42824-021-00050-2
Wang, R., Lv, N., Li, C., Cai, G., Pan, X., Li, Y., & Zhu, G. (2021). Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches. Water research, 193, 116896. DOI: https://doi.org/10.1016/j.watres.2021.116896
Yang, L., Xu, F., Ge, X., & Li, Y. (2015). Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 44, 824-834. DOI: https://doi.org/10.1016/j.rser.2015.01.002
Zhai, N., Zhang, T., Yin, D., Yang, G., Wang, X., Ren, G., & Feng, Y. (2015). Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste management, 38, 126-131. DOI: https://doi.org/10.1016/j.wasman.2014.12.027
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Life Science and Agriculture Research
This work is licensed under a Creative Commons Attribution 4.0 International License.