Performance Evaluation of a Walking-Type Rice Transplanter under Different Seedling Media Thicknesses in Yogyakarta, Indonesia

Author's Information:

Sri Markumningsih*

Department of Agricultural Engineering and Biosystem, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Royhanda Candra Ibrahim

Department of Agricultural Engineering and Biosystem, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Bambang Purwantana

Department of Agricultural Engineering and Biosystem, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Radi

Department of Agricultural Engineering and Biosystem, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Vol 04 No 12 (2025):Volume 04 Issue 12 December 2025

Page No.: 773-781

Abstract:

The performance of a walking-type rice transplanter is strongly affected by seedling quality, particularly the thickness of seedling media used in dapog nursery systems. This study aimed to evaluate the effect of seedling media thickness on field capacity, planting efficiency, and planting quality of a walking-type rice transplanter in accordance with SNI 7607:2020. Three levels of seedling media thickness were tested, namely 1.0 cm, 1.5 cm, and 2.0 cm. Field performance tests were conducted with three replications, while planting quality was assessed through field sampling based on standard quality parameters. The results showed that effective field capacities for seedling media thicknesses of 1.0, 1.5, and 2.0 cm were 0.17, 0.18, and 0.17 ha h⁻¹, respectively, while theoretical field capacities were 0.24, 0.22, and 0.21 ha h⁻¹. Planting efficiency increased with media thickness, reaching 72.42%, 81.82%, and 82.11%, whereas time-based efficiency values were 58.98%, 67.80%, and 67.28% for the respective treatments. Analysis of variance indicated no significant differences in efficiency parameters among treatments (p > 0.05). All treatments satisfied the planting quality requirements specified in SNI 7607:2020, including spacing uniformity, planting depth, number of seedlings per hill, and number of planting holes per meter. The lowest percentage of missing hills (1.16%) and lodged plants (12.54%) was observed at a seedling media thickness of 2.0 cm. A scoring analysis confirmed that 2.0 cm provided the best overall performance. These results indicate that optimizing seedling media thickness can improve the performance and planting quality of walking-type rice transplanters under field conditions.

KeyWords:

planting efficiency; planting quality; seedling media thickness; SNI 7607:2020; walking-type rice transplanter.

References:

  1. Asmara, S., Mahesa, K. M. D., Suharyatun, S., & Kuncoro, S. (2024). Analisis Ekonomi Usaha Jasa Penyewaan Transplanter. Jurnal Agricultural Biosystem Engineering3(2), 285–296. https://doi.org/10.23960/jabe.v3i2.9547
  2. Basir, M. et al. (2020) ‘Techno-economic performance of mechanical transplanter for hybrid variety of rice in unpuddled soil’, Progressive Agriculture, 30(4), pp. 405–413. Available at: https://doi.org/10.3329/pa.v30i4.46901.
  3. Choudhary, V. and Machavaram, R. (2023) ‘A Comprehensive Review of Sustainable Soil Organic Growing Media for Mat-Type Paddy Seedling Nurseries Under Indian Agronomical Condition’, Journal of Soil Science and Plant Nutrition, 23(2), pp. 1515–1534. Available at: https://doi.org/10.1007/s42729-023-01153-2.
  4. Gan, S. et al. (2025) ‘Seedling row extraction on unmanned rice transplanter operating side based on semi-supervised semantic segmentation’, Computers and Electronics in Agriculture, 230(December 2024), p. 109759. Available at: https://doi.org/10.1016/j.compag.2024.109759.
  5. He, L. et al. (2025) ‘Real-time monitoring system for evaluating the operational quality of rice transplanters’, Computers and Electronics in Agriculture, 234(March), p. 110204. Available at: https://doi.org/10.1016/j.compag.2025.110204.
  6. Kim, S.J. et al. (2023) ‘Development of Seeding Rate Monitoring System Applicable to a Mechanical Pot-Seeding Machine’, Agriculture (Switzerland), 13(10). Available at: https://doi.org/10.3390/agriculture13102000.
  7. Lestari, N.L.T.D., -, M. and Priyati, A. (2017) ‘Uji Performansi Rice Transplanter Tipe Walking Model Pf48 (2 Zs-4a) Di Desa Tanjung Kecamatan Tanjung Kabupaten Lombok Utara-Ntb’, Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 5(2), pp. 395–407. Available at: https://doi.org/10.29303/jrpb.v5i2.55.
  8. Ling, Y. et al. (no date) ‘High-density nursery seeding and seedling age management regulate carbon-nitrogen metabolism and grain yield in mechanically transplanted rice’, Journal of Integrative Agriculture [Preprint]. Available at: https://doi.org/10.1016/j.jia.2025.11.040.
  9. Muharram, M. and Supandji, S. (2022) ‘Pendampingan Kegiatan Pembibitan Padi Sistem Dapog di Bumdes Sosrohbahu Desa Rejeni Kabupaten Sidoarjo’, JATIMAS : Jurnal Pertanian dan Pengabdian Masyarakat, 2(1), p. 49. Available at: https://doi.org/10.30737/jatimas.v2i1.2555.
  10. R. Asha, K., . P. and M. Ray, B.R. (2020) ‘Development of Manual (Pull-type) Two-row Paddy Transplanter for the Benefit of Small Farmers’ Land Holdings’, Current Journal of Applied Science and Technology, 38(6), pp. 1–8. Available at: https://doi.org/10.9734/cjast/2019/v38i630462.
  11. Rajendran, M. and Ranganathan, T. (2025) ‘Advancements in paddy transplanter mechanization implications for sustainable agriculture’, Sustainable Futures, 10(August), p. 101235. Available at: https://doi.org/10.1016/j.sftr.2025.101235.
  12. Rikayanti, Arifin and Pata, A.A. (2021) ‘Kontribusi Produksi Padi Sawah Daerah Sentra Bosowa Terhadap Produksi Padi Sawah di Sulawesi Selatan’, Jurnal Agribisnis, 9(1), pp. 99–120.
  13. Sabur, A. and Ratmini, S. (2016) ‘Mobilisasi Bibit Padi Unggul sistem Dapog antar Kabupaten Sebagai Alternatif Penyediaan Bibit Padi Guna Mendukung Percepatan Tanam Padi di Kalimantan Selatan Paddy Seed Superior mobilization Dapog system between the District as an Alternative Provision Pa’, J. Lahan Suboptimal, 5(1), pp. 43–52.
  14. Saleh, A.S. (2018) ‘Rekayasa Alat Tanam Bibit Padi (Transplanter) Sederhana Dengan Sistem Crank Untuk Empat Baris Yang Ergonomis, Terjangkau, dan Memotivasi Pemenuhan Kelangkaan Energi Bidang Pertanian’, Jurnal Ilmiah Inovasi, 17(3), pp. 11–14. Available at: https://doi.org/10.25047/jii.v17i3.559.
  15. Singh, N.K. et al. (2023) ‘Influence of transplanting techniques and age of wash root type seedlings on planting attributes of paddy rice’, Cogent Food and Agriculture, 9(1). Available at: https://doi.org/10.1080/23311932.2023.2176978.
  16. Surya, A. (2013) ‘Faktor-Faktor yang Mempengaruhi Pembangunan Sektor Pertanian dan Implikasinya terhadap Kesejahteraan Petani di Provinsi Lampung . Oleh : Andi Surya ( Alumni Doktor Ilmu Ekonomi Universitas Borobudur )’, Journal Economy, pp. 89–141.
  17. Umar, S. and Pangaribuan, S. (2017) ‘Evaluasi Penggunaan Mesin Tanam Bibit Padi (Rice Transplanter) Sistem Jajar Legowo Di Lahan Pasang Surut’, Jurnal Teknik Pertanian LampungVol, 6(2), pp. 105–114.
  18. Wang, X. et al. (2024) ‘Research on density grading of hybrid rice machine-transplanted blanket-seedlings based on multi-source unmanned aerial vehicle data and mechanized transplanting test’, Computers and Electronics in Agriculture, 222(September 2023). Available at: https://doi.org/10.1016/j.compag.2024.109070.
  19. Zakky, M., Prayoga, A. and Indrayanti, T. (2021) ‘Unjuk Kerja Walking Rice Transplanter 4 Baris Dengan Sistem Tanam Jajar Legowo 2 : 1 Di Balai Penyuluhan Pertanian Sepatan, Kabupaten Tangerang, Banten’, Jurnal Agrica Ekstensia, 15(1), pp. 76–81.