Characterization of Three Brown Algae Bifurcaria Bifurcata, Cystoseira Gibraltarica and Fucus Spiralis
DOI:
https://doi.org/10.55677/ijlsar/V02I11Y2023-04Keywords:
characterization, brown algae, total phenols, antioxidant activity, total sugars and proteins.Abstract
In recent years, scientists have become interested in marine macroalgae, which represent a rich source of bioactive substances. These molecules are characterized by a multitude of forms and structures and have several biological activities. The present study aims to characterize the three brown algae Bifurcaria bifurcata, Cystoseira gibraltarica and Fucus spiralis. These were collected in the region of Cap Ghir north of Agadir. The results obtained show that the mineral analyses of the extracts of F. spiralis, B. bifurcata and C. gibraltarica highlighted the richness of these brown algae in macroelements (Ca, K, P, Na, N). Concerning the total sugar content of C. gibraltarica shows a significant difference with the other two algae B. bifurcata and F. spiralis and has the highest content. For the protein content, no significant difference was recorded between the three algal extracts. Indeed, the aqueous extract of C. gibraltarica has a protein content of 48.44 mg/g DM, the aqueous extract of F. spiralis showed an average protein content of 45.55 mg/g DM, and that of the aqueous extract of B. bifurcata is 44.03 mg/g DM. The three brown algae C. gibraltarica, B. bifurcata and F. spiralis have consistent levels of organic matter. F. spiralis and C. gibraltarica have significantly equivalent organic matter contents (73.74 and 73.44 g/100g DM, respectively). In this study, the analysis of total phenols shows that F. spiralis presents a significant difference with the two other algae and has the highest content (7.2 µg/mg dry matter). In general and whatever the method of flavonoid determination, the flavonoid content of the three algae is significantly different. The methanolic extract of F. spiralis shows the highest flavonoid content, followed by B. bifurcata. While the lowest content is presented with the methanolic extract of C. gibraltarica. The results of the antioxidant potential using DPPH reveal a significant difference between the three algae. Indeed, the extracts of the analyzed algae present an antioxidant activity varying between 33.61 and 88.3%, with a high antioxidant potential (88.3%) for F. spiralis and thus an important capacity to trap the DPPH radical. These three studied brown algae represent a promising source of biologically active molecules that can be used in several fields such as organic agriculture.
References
Abdille, M. H., Singh, R., Jayaprakasha, G., & Jena, B. (2005). Antioxidant activity of the extracts from Dillenia indica fruits. Food chemistry, 90(4), 891-896.
Agregan, R. n., Munekata, P. E., Domanguez, R., Carballo, J., Franco, D., & Lorenzo, J. M. (2016). Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Research International, 99, 986-994.
Águila-Ramírez, R. N., Arenas-González, A., Hernández-Guerrero, C. J., González-Acosta, B., Borges-Souza, J. M., Véron, B., (2017). Antimicrobial and antifouling activities achieved by extracts of seaweeds from Gulf of California, Mexico. Hidrobiológica, 22(1), 8-15.
Ahn. (2007). A Study on the Growth and Management Status of Mansongjung forest in Hahoe, Andong (10.7229/jkn.2011.4.3.161).
Ali, N., A. Farrell, A. Ramsubhag and J. Jayaraman (2015). "The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions." Journal of Applied Phycology 28(2): 1353-1362.
Andary, C. 1990. Documentation chimique et pharmaceutique pour l’AMM du MERALOPS comprimés. Laboratoire Allergan-Dulcis, Monaco, France.
Ben Ahmed, Z., Yousfi, M, Viaene, J, Dejaegher, B, Demeyer, K, Mangelings, D, Heyden, YV. (2016). "Determination of optimal extraction conditions for phenolic compounds from Pistacia atlantica leaves using the response surface methodology." Analytical Methods 8(31): 6107-6114.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199.
Boizot, N. and Charpentier, J.-P. 2006. Méthode rapide d’évaluation du contenu en composés phénoliques des organes d’un arbre forestier. Le Cahier des Techniques de l'NRA, Numéro spécial 2006: Méthodes et outils pour l'observation et l'évaluation des milieux forestiers, prairiaux et aquatiques: 79-82.
Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
Bruneton, J. (1999). Pharmacognosy. Phytochemistry. Medicinal plants (second ed.). Paris: Lavoisier. Publishing: 1095-1119.
Castro-Gonzalez, M. I., Pérez-Gil, F., Pérez-Estrella, S., & Carrillo-Domanguez, S. (1996). Chemical composition of the green alga Ulva lactuca. Ciencias Marinas, 22(2), 205-213.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
El Guiche, R., S. Tahrouch, O. Amri, K. El Mehrach and A. Hatimie (2015). "Antioxidant activity and total phenolic and flavonoid contents of 30 medicinal and aromatic plants located in the South of Morocco." International Journal of New Technology and Research 1(3).
Farasat, M., Khavari-Nejad, R.-A., Nabavi, S. M. B., & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian journal of pharmaceutical research: IJPR, 13(1), 163.
Farvin, K. S. and C. Jacobsen (2013). "Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast." Food chemistry 138(2-3): 1670-1681.
Frolund, B., Griebe, T., & Nielsen, P. H. (1995). Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 43(4), 755-761.
Harnafi, H., el Houda Bouanani, N., Aziz, M., Caid, H. S., Ghalim, N., & Amrani, S. (2007). The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: a comparison with fenofibrate. Journal of Ethnopharmacology, 109(1), 156-160.
Hernandez-Herrera, Mireya, R., Santacruz-Ruvalcaba, F., Ruiz-Lopez, M. A., Norrie, J., & Hernandez-Carmona, G. (2013). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of applied phycology, 26(1), 619-628.
Hong, D. D., Hien, H. M., & Son, P. N. (2007). Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology, 19(6), 817-826.
Jay, M., Gonnet, J.-F. o., Wollenweber, E., & Voirin, B. (1975). Sur l’analyse qualitative des aglycones flavoniques dans une optique chimiotaxinomique. Phytochemistry, 14(7), 1605-1612.
Kalaivanan, C., & Venkatesalu, V. (2012). Utilization of seaweed Sargassum myriocystum extracts as a stimulant of seedlings of Vigna mungo (L.) Hepper. Spanish Journal of Agricultural Research, 10(2), 466-470.
Khan,W., Rayirath, U.P., Subramanian, S., Mundaya, N., Jithesh, M.N., Rayirath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul., 28:386–399.
Kindleysides, S., Quek, S.-Y., & Miller, M. R. (2012). Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chemistry, 133(4), 1624-1631.
Ksouri, R., Falleh, H., Megdiche, W., Trabelsi, N., Mhamdi, B., Chaieb, K., et al. (2009). Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food and Chemical toxicology, 47(8), 2083-2091.
Loo, A., Jain, K. and Darah, I. 2008. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chemistry, 107(3): 1151-1160.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J biol chem, 193(1), 265-275.
Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food chemistry, 100(4), 1409-1418.
Makkar, H. P. (2003). Quantification of tannins in tree and shrub foliage: a laboratory manual, Springer Science & Business Media. 4-6.
Manivannan, S., Balamurugan, M., Parthasarathi, K., Gunasekaran, G., & Ranganathan, L. S. (2009). Effect of vermicompost on soil fertility and crop productivity-beans (Phaseolus vulgaris). Journal of Environmental Biology, 30(2): 275-281.
Neu, R. 1956. A new reagent for differentiating and determining flavones on paper chromatograms. Naturwissenschaften, 43(82): 10.1007.
Olsen, S. L. Dean (1965). Phosphorus. Chemical and microbiological properties. Methods of Soil Analysis, Part 2: 1035-1048.
Page, Miller RH, Keeney DR, Baker D, Ellis R and R. J (1982). "Methods of soil analysis. eds." 631.41: 9-2.
Pérez, M. J., Falqué, E., & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine drugs, 14(3): 52-57.
Piccolella, S., A. Fiorentino, S. Pacifico, B. D’Abrosca, P. Uzzo and P. Monaco (2008). "Antioxidant properties of sour cherries (Prunus cerasus L.): role of colorless phytochemicals from the methanolic extract of ripe fruits." Journal of agricultural and food chemistry 56(6): 1928-1935.
Riadi, H. (1998). Biodiversité des algues marines. Rapport étude nationale de biodiversité Projet GEF/6105, 96.
Sabeena, F., Jacobsen (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. (10.1016/j.foodchem.2012.10.078).
Sanchez-Moreno, C. (2002). Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food science and technology international, 8(3), 121-137.
Sharma, H. S. S., C. Fleming, C. Selby, J. R. Rao, T. Martin (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1): 465-490.
Singleton, V. L., R. Orthofer and R. M. Lamuela-Raventós (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299: 152-178.
Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of applied phycology, 16(4): 245-262.
Wang, T., R. Jonsdottir and G. Ólafsdóttir (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food chemistry, 116(1): 240-248.
Yuan, Y. V., & Walsh, N. A. (2006). Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food and chemical toxicology, 44(7) : 1144-1150.
Zaragozá, M., López, D., P. Sáiz, M., Poquet, M., Pérez, J., Puig-Parellada, P., et al. (2008). Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. Journal of agricultural and food chemistry, 56(17), 7773-7780.
Zodape, S., S. Mukhopadhyay, K. Eswaran, M. Reddy and J. Chikara (2010). Enhanced yield and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. Journal of scientific and industrial research, 69: 468-471.