Factors Influencing N2O Emissions of Major Vegetable Cropping Systems in Peri-Urban Hanoi, Vietnam

Authors

  • Nguyen Phi Hung The Sustainable Trade Initiative IDH
  • Gordon Rogers Sydney Institute of Agriculture, School of Life and Environmental Science, The University of Sydney
  • Peter Ampt Sydney Institute of Agriculture, School of Life and Environmental Science, The University of Sydney

DOI:

https://doi.org/10.55677/ijlsar/V01I03Y2022-02

Keywords:

N2O emissions, vegetables, crop management practices, Hanoi peri-urban, nitrogen fertilisers.

Abstract

Crop management practices in intensive vegetable production can influence nitrous oxide emissions from soils. This study investigated emission factors from different vegetable management practices. Interviews were conducted with 60 vegetable farmers to identify practices including soil management, nitrogen fertiliser use and irrigation in Vannoi and Dangxa communes in the Hanoi peri-urban area. Practices responsible for high N2O emissions were overuse of nitrogen fertilisers and furrow irrigation. An improvement in farmers’ adoption of best practices in fertiliser application and irrigation could reduce emissions without affecting crop productivity.

References

Amha, Y., & Bohne, H. (2011). Denitrification from the horticultural peats: effects of pH, nitrogen, carbon, and moisture contents. Biology and Fertility of Soils, 47(3), 293-302. doi:10.1007/s00374-010-0536-y

Bouwman, A., Boumans, L., & Batjes, N. (2002). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4), 6-1-6-13.

Chapuis‐Lardy, L., Wrage, N., Metay, A., Chotte, J. L., & Bernoux, M. (2007). Soils, a sink for N2O? A review. Global Change Biology, 13(1), 1-17. doi:10.1111/j.1365-2486.2006.01280.x

Chen, H., Li, X., Hu, F., & Shi, W. (2013). Soil nitrous oxide emissions following crop residue addition: a meta‐analysis. Global Change Biology, 19(10), 2956-2964. doi:10.1111/gcb.12274

Everaarts, A. P., Neeteson, J. J., Huong, P. T. T., & Struik, P. C. (2015). Vegetable Production After Flooded Rice Improves Soil Properties in the Red River Delta, Vietnam. Pedosphere, 25(1), 130-139. doi:http://dx.doi.org/10.1016/S1002-0160(14)60083-7

Ha, N., Feike, T., Back, H., Xiao, H., & Bahrs, E. (2015). The effect of simple nitrogen fertilizer recommendation strategies on product carbon footprint and gross margin of wheat and maize production in the North China Plain. Journal of environmental management, 163, 146-154.

Ha, T. T. T. (2008). Sustainability of peri-urban agriculture of Hanoi: The case of vegetable production (Doctoral dissertation). Thèse de doctorat, Paris, INA-PG.

Halvorson, A. D., Del Grosso, S. J., & Reule, C. A. (2008). Nitrogen, Tillage, and Crop Rotation Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems. Journal of environmental quality, 37(4), 1337-1344. doi:10.2134/jeq2007.0268

Huong, P. T. T., Everaarts, A. P., Neeteson, J. J., & Struik, P. C. (2013). Vegetable production in the Red River Delta of Vietnam. I. Opportunities and constraints. NJAS - Wageningen Journal of Life Sciences, 67, 27-36. doi:https://doi.org/10.1016/j.njas.2013.09.002

IPCC. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva, Switzerland Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_All_Topics.pdf.

Jha, P., Singh, J., & Kashyap, A. (1996). Dynamics of viable nitrifier community and nutrient availability in dry tropical forest habitat as affected by cultivation and soil texture. Plant and Soil, 180(2), 277-285.

Johnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107-124. doi:10.1016/j.envpol.2007.06.030

K. Smith D. Watts T. Way H. Torbert S, P. (2012). Impact of Tillage and Fertilizer Application Method on Gas Emissions in a Corn Cropping System. 22(5), 604-615. doi:10.1016/S1002-0160(12)60045-9

Kallenbach, C., Horwath, W., Kabir, Z., & Rolston, D. (2007). Subsurface drip irrigation, cover crops and conservation tillage effects on greenhouse gas emissions. Sustainable Agirculture Farming Systems Project, 7, 3-4.

Kennedy, T. L., Suddick, E. C., & Six, J. (2013). Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agriculture, Ecosystems & Environment, 170, 16-27. doi:http://dx.doi.org/10.1016/j.agee.2013.02.002

Khai, N. M., Ha, P. Q., & Öborn, I. (2007). Nutrient flows in small-scale peri-urban vegetable farming systems in Southeast Asia—A case study in Hanoi. Agriculture, Ecosystems & Environment, 122(2), 192-202. doi:http://dx.doi.org/10.1016/j.agee.2007.01.003

Koga, N. (2013). Nitrous oxide emissions under a four-year crop rotation system in northern Japan: impacts of reduced tillage, composted cattle manure application and increased plant residue input. Soil Science and Plant Nutrition, 59(1), 56-68. doi:10.1080/00380768.2012.733870

Ministry of Natural Resources and Environment. (2014). Viet Nam’s National Communications and Initial Biennial Updated Report submitted to the UNFCCCC. Vietnam Publicsing House of Natural Resource, Environment and Cartography Retrieved from http://unfccc.int/resource/docs/natc/vnmbur1.pdf.

Montagu, K., Moore, S., Southam-Rogers, L., Phi Hung, N., Mann, L., & Rogers, G. (2017). Low nitrous oxides emissions from Australian processing tomato crops – a win for the environment, our health and farm productivity. Acta Horticulturae(1159), 7-14. doi:10.17660/ActaHortic.2017.1159.2

Mosier, A., & Kroeze, C. (2000). Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere : global change science, 2(3-4), 465-473. doi:10.1016/S1465-9972(00)00039-8

Mummey, D. L., Smith, J. L., & Bluhm, G. (1998). Assessment of alternative soil management practices on N2O emissions from US agriculture. Agriculture, Ecosystems & Environment, 70(1), 79-87.

Oo, A. Z., Nguyen, L., Win, K. T., Cadisch, G., & Bellingrath-Kimura, S. D. (2013). Toposequential variation in methane emissions from double-cropping paddy rice in Northwest Vietnam. Geoderma, 209–210, 41-49. doi:http://dx.doi.org/10.1016/j.geoderma.2013.05.025

Pandey, A., Mai, V. T., Vu, D. Q., Bui, T. P. L., Mai, T. L. A., Jensen, L. S., & de Neergaard, A. (2014). Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture, Ecosystems & Environment, 196, 137-146. doi:http://dx.doi.org/10.1016/j.agee.2014.06.010

People's committee of Dangxa commune. (2015). Dangxa agriculture and land use report (in Vietnamese).

People's committee of Vannoi commune. (2015). Vannoi agriculture and land use report (in Vietnamese).

Rashti, M., Wang, W., Moody, P., Chen, C., & Ghadiri, H. (2015). Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: A review. Atmospheric Environment, 112, 225-233. doi:https://doi.org/10.1016/j.atmosenv.2015.04.036

Riley, H. (2002). Nitrogen Contribution of Various Vegetable Residues to Succeeding Barley and Potato Crops / Stickstoffnachlieferung aus Ernterückständen von Gemüse während nachfolgenden Gersteund Kartoffelkulturen. Die Gartenbauwissenschaft, 67(1), 17-22.

Sainju, U. M., Stevens, W. B., Caesar-TonThat, T., & Liebig, M. A. (2012). Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. Journal of environmental quality, 41(6), 1774-1786. doi:10.2134/jeq2012.0176

Sheehy, J., Six, J., Alakukku, L., & Regina, K. (2013). Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agriculture, Ecosystems and Environment, 164, 190-199. doi:10.1016/j.agee.2012.10.007

Sheriff, G. (2005). Efficient waste? Why farmers over-apply nutrients and the implications for policy design. Review of agricultural economics, 27(4), 542-557.

Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81(2), 169-178. doi:10.1007/s10705-007-9138-y

Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133(3), 247-266. doi:10.1016/j.agee.2009.04.021

Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207-228. doi:10.1007/s10705-006-9000-7

Tam, L. (2016). Completion of the program on production and consumption of safe vegetables in Hanoi for the period 2009-2016. Retrieved from https://hanoi.gov.vn/tintuc_sukien/-/hn/ZVOm7e3VDMRM/7320/2781416/4/tong-ket-e-an-san-xuat-va-tieu-thu-rau-an-toan-thanh-pho-ha-noi-giai-oan-2009-2016.html;jsessionid=tVmV0zNbbHPu77HN-4wCCrfF.app2

Thu, T. N., Loan Bui Thi, P., Van, T. M., & Hong, S. N. (2016). Effect of Water Regimes and Organic Matter Strategies on Mitigating Green House Gas Emission from Rice Cultivation and Co-benefits in Agriculture in Vietnam. International Journal of Environmental Science and Development, 7(2), 85. doi:10.7763/IJESD.2016.V7.746

Trinh, M. V., Tesfai, M., Borrell, A., Nagothu, U. S., Bui, T. P. L., Quynh, V. D., & Thanh, L. Q. (2017). Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy and Water Environment, 15(2), 317-330. doi:10.1007/s10333-016-0551-1

Van Hoi, P., Mol, A. P. J., & Oosterveer, P. J. M. (2009). Market governance for safe food in developing countries: The case of low-pesticide vegetables in Vietnam. Journal of environmental management, 91(2), 380-388. doi:https://doi.org/10.1016/j.jenvman.2009.09.008

Van Kessel, C., Venterea, R., Six, J., Adviento‐Borbe, M. A., Linquist, B., & van Groenigen, K. J. (2013). Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta‐analysis. Global Change Biology, 19(1), 33-44.

Venterea, R. T., Burger, M., & Spokas, K. A. (2005). Nitrogen oxide and methane emissions under varying tillage and fertilizer management. Journal of environmental quality, 34(5), 1467-1477. doi:10.2134/jeq2005.0018

Xiong, Z., Xie, Y., Xing, G., Zhu, Z., & Butenhoff, C. (2006). Measurements of nitrous oxide emissions from vegetable production in China. Atmospheric Environment, 40(12), 2225-2234. doi:http://dx.doi.org/10.1016/j.atmosenv.2005.12.008

Zheng, X., Han, S., Huang, Y., Wang, Y., & Wang, M. (2004). Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 18(2), n/a-n/a. doi:10.1029/2003GB002167

Zhou, Y., Yang, H., Mosler, H.-J., & Abbaspour, K. C. (2010). Factors affecting farmers decisions on fertilizer use: A case study for the Chaobai watershed in Northern China.

Downloads

Published

2022-11-30

How to Cite

Hung, N. P. ., Rogers, G., & Ampt, P. . (2022). Factors Influencing N2O Emissions of Major Vegetable Cropping Systems in Peri-Urban Hanoi, Vietnam. International Journal of Life Science and Agriculture Research, 1(3), 38–45. https://doi.org/10.55677/ijlsar/V01I03Y2022-02