Synergistic and Competence of Native Plant Growth Promoting Rhizobacteria on Direct Mechanism on Growth Plants: A Review
DOI:
https://doi.org/10.55677/ijlsar/V03I2Y2024-08Keywords:
Nitrogen Fixing Bacteria, Local Microorganism, PGPRAbstract
The most significant challenges facing farmers and plant producers worldwide are minimizing or neutralizing the impacts of environmental pressures on agricultural plants, safeguarding against pests and diseases, and simultaneously maintaining optimal plant growth and development. The environment and raising food quality standards require minimizing using of chemicals fertilizer. Plant growth-promoting rhizobacteria (PGPR) have the ability to promote plant growth through a range of mechanisms, both direct and indirect. These mechanisms include mineral solubilization, phytohormone and siderophore synthesis, and the utilization of extra secondary metabolites and enzymes. PGPR have a prospect in biofetilizer can improve the effectiveness of fertilization.
References
Adedeji, A. A., Häggblom, M. M., & Babalola, O. O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African. 9, e00492. https://doi.org/10.1016/j.sciaf.2020.e00492
AlAli, H. A., Khalifa, A., & Al-Malki, M. (2021). Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus. South African Journal of Botany. 139:200–209. https://doi.org/10.1016/j.sajb.2021.02.019
Albdaiwi, R. N., Khyami-Horani, H., Ayad, J. Y., Alananbeh, K. M., & Al-Sayaydeh, R. (2020). Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Oxidative Medicine and Cellular Longevity. 10(July):1–16.
https://doi.org/10.3389/fmicb.2019.01639
Bennett, E. M., Murray, J. W., & Isalan, M. (2023). Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution. BioDesign Research. 5:1–12. https://doi.org/10.34133/bdr.0005
Bhattacharyya, C., Banerjee, S., Acharya, U., Mitra, A., Mallick, I., Haldar, A., Haldar, S., Ghosh, A., & Ghosh, A. (2020). Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Scientific Reports. 10(1):1–19. https://doi.org/10.1038/s41598-020-72439-z
Burén, S., Jiménez-Vicente, E., Echavarri-Erasun, C., & Rubio, L. M. (2020). Biosynthesis of Nitrogenase Cofactors. Chemical Reviews. 120(12):4921–4968.
https://doi.org/10.1021/acs.chemrev.9b00489
Chagas, F. O., Pessotti, R. D. C., Caraballo-Rodríguez, A. M., & Pupo, M. T. (2018). Chemical signaling involved in plant-microbe interactions. Chemical Society Reviews. 47(5):1652–1704. https://doi.org/10.1039/c7cs00343a
Chamkhi, I., Sbabou, L., & Aurag, J. (2023). Improved growth and quality of saffron (Crocus sativus L.) in the field conditions through inoculation with selected native plant growth-promoting rhizobacteria (PGPR). Industrial Crops and Products. 197(August 2022), 116606. https://doi.org/10.1016/j.indcrop.2023.116606
Chandra, A., Chandra, P., & Tripathi, P. (2021). Whole genome sequence insight of two plant growth-promoting bacteria (B. subtilis BS87 and B. megaterium BM89) isolated and characterized from sugarcane rhizosphere depicting better crop yield potentiality. Microbiological Research. 247(February). https://doi.org/10.1016/j.micres.2021.126733
Chandra, P., Tripathi, P., & Chandra, A. (2018). Isolation and molecular characterization of plant growth-promoting Bacillus spp. and their impact on sugarcane (Saccharum spp. hybrids) growth and tolerance towards drought stress. Acta Physiologiae Plantarum. 40(11). https://doi.org/10.1007/s11738-018-2770-0
Chaudhary Parul, Singh Shivani, Chaudhary Anuj, Sharma Anita, & Kumar Govind. (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Frontiers in Plant Science. 13(930340), 1–21.
Chen, L., Hao, Z., Li, K., Sha, Y., Wang, E., Sui, X., Mi, G., Tian, C., & Chen, W. (2021). Effectsof growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microbial Biotechnology. 14(2), 535–550. https://doi.org/10.1111/1751-7915.13693
Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology. 38(4):401–419. https://doi.org/10.1590/S1415-475738420150053
Devi, R., Kaur, T., Kour, D., Yadav, A., Yadav, A. N., Suman, A., Ahluwalia, A. S., & Saxena, A. K. (2022). Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals’ deficiency in agricultural soil. Journal of Applied Microbiology. 133(3):1245–1272. https://doi.org/10.1111/jam.15627
Gaby, J. C., & Buckley, D. H. (2012). A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0042149
Ghosh, A., Biswas, D. R., Bhattacharyya, R., Das, S., Das, T. K., Lal, K., Saha, S., Koli, P., Shi, R., Alam, K., & Ren, Y. (2023). Rice residue promotes mobilisation and plant acquisition of soil phosphorus under wheat (Triticum aestivum)-rice (Oryza sativa) cropping sequence in a semi-arid Inceptisol. Scientific Reports.13(1):1–17. https://doi.org/10.1038/s41598-023-44620-7
Harahap, R. T., Azizah, I. R., Setiawati, M. R., Herdiyantoro, D., & Simarmata, T. (2023). Enhancing Upland Rice Growth and Yield with Indigenous Plant Growth-Promoting Rhizobacteria (PGPR) Isolate at N-Fertilizers Dosage. Agriculture (Switzerland). 13(10).
https://doi.org/10.3390/agriculture13101987
Herrera-Quiterio, A., Toledo-Hernández, E., Aguirre-Noyola, J. L., Romero, Y., Ramos, J., Palemón-Alberto, F., & Toribio-Jiménez, J. (2020). Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Revista Argentina de Microbiologia. 52(3):231–239. https://doi.org/10.1016/j.ram.2019.08.003
Hu, J. (2018). Human Alteration of the Nitrogen Cycle and Its Impact on the Environment. IOP Conference Series: Earth and Environmental Science, 178(1), 2–7.
https://doi.org/10.1088/1755-1315/178/1/012030
Jannah, M., Jannah, R., & Fahrunsyah. (2022). Kajian Literatur : Penggunaan Plant Growth Promoting Rhizobacteria (PGPR) untuk Meningkatkan Pertumbuhan dan Mengurangi Pemakaian Pupuk Anorganik pada Tanaman Pertanian. Jurnal Agroekoteknologi Tropika Lembab. 5(1):41–49.
Kende, H., & Zeevaart, J. A. D. (1997). The five “classical” plant hormones. Plant Cell. 9(7): 1197–1210. https://doi.org/10.1105/tpc.9.7.1197
Khumairah, F. H., Setiawati, M. R., Fitriatin, B. N., Simarmata, T., Alfaraj, S., Ansari, M. J., Enshasy, H. A. E., Sayyed, R. Z., & Najafi, S. (2022). Halotolerant Plant Growth-Promoting Rhizobacteria Isolated From Saline Soil Improve Nitrogen Fixation and Alleviate Salt Stress in Rice Plants. Frontiers in Microbiology. 13(June):1–14.
https://doi.org/10.3389/fmicb.2022.905210
Kumar, A., & Dubey, A. (2020). Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 24, 337–352.
https://doi.org/10.1016/j.jare.2020.04.014
Kumar, B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 5(6):867–876. https://doi.org/10.1007/s13205-015-0293-6
Kumar, T., Kumar, D., Gangwar, R., Srivastava, V., & Singh, S. (2022). Intensive Farming Techniques, Features, Advantage and Disadvantage. The Scientific Agriculture. 01(01):12–17.
Ladha, J. K., Peoples, M. B., Reddy, P. M., Biswas, J. C., Bennett, A., Jat, M. L., & Krupnik, T. J. (2022). Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research. 283(April):108541.
https://doi.org/10.1016/j.fcr.2022.108541
Lyu, M., Li, X., Xie, J., Homyak, P. M., Ukonmaanaho, L., Yang, Z., Liu, X., Ruan, C., & Yang, Y. (2019). Root–microbial interaction accelerates soil nitrogen depletion but not soil carbon after increasing litter inputs to a coniferous forest. Plant and Soil. 444(1–2):153–164. https://doi.org/10.1007/s11104-019-04265-w
Mir, M. I., Hameeda, B., Quadriya, H., Kumar, B. K., Ilyas, N., Kee Zuan, A. T., El Enshasy, H. A., Dailin, D. J., Kassem, H. S., Gafur, A., & Sayyed, R. Z. (2022). Multifarious Indigenous Diazotrophic Rhizobacteria of Rice (Oryza sativa L.) Rhizosphere and Their Effect on Plant Growth Promotion. Frontiers in Nutrition, 8(January).
https://doi.org/10.3389/fnut.2021.781764
Mohanty, P., Singh, P. K., Chakraborty, D., Mishra, S., & Pattnaik, R. (2021). Insight Into the Role of PGPR in Sustainable Agriculture and Environment. Frontiers in Sustainable Food Systems. 5(June):1–12.
https://doi.org/10.3389/fsufs.2021.667150
Mus, F., Colman, D. R., Peters, J. W., & Boyd, E. S. (2019). Geobiological feedbacks, oxygen, and the evolution of nitrogenase. Free Radical Biology and Medicine. 140(January):250–259.
https://doi.org/10.1016/j.freeradbiomed.2019.01.050
Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability (Switzerland). 13(4):1–20.
https://doi.org/10.3390/su13041868
FAO. (2023). OECD-FAO Agricultural Outlook 2023-2032. OECD Publishing, Paris.
Osman, J. R., Fernandes, G., & DuBow, M. S. (2017). Bacterial diversity of the rhizosphere and nearby surface soil of rice (Oryza sativa) growing in the Camargue (France). Rhizosphere. 3:112–122. https://doi.org/10.1016/j.rhisph.2017.03.002
Purwanto, P., Agustono, T., Widjonarko, B. R., & Widiatmoko, T. (2019). Indol Acetic Acid Production of Indigenous Plant Growth Promotion Rhizobacteria from Paddy Soil. Planta Tropika: Journal of Agro Science. 7(1):1–7. https://doi.org/10.18196/pt.2019.087.1-7
Riseh, R. S., Ebrahimi-Zarandi, M., Gholizadeh Vazvani, M., & Skorik, Y. A. (2021). Reducing drought stress in plants by encapsulating plant growth-promoting bacteria with polysaccharides. International Journal of Molecular Sciences, 22(23).
https://doi.org/10.3390/ijms222312979
Ritika, B., & Utpal, D. (2014). Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research. 8(24):2332–2343.
https://doi.org/10.5897/ajmr2013.6374
Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae. 196:124–134.
https://doi.org/10.1016/j.scienta.2015.08.042
Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M., & Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences. 22(19).
https://doi.org/10.3390/ijms221910529
Sahur, A., Ala, A., Patandjengi, B., & Syam’un, E. (2018). Effect of Seed Inoculation with Actinomycetes and Rhizobium Isolated from Indigenous Soybean and Rhizosphere on Nitrogen Fixation, Growth, and Yield of Soybean. International Journal of Agronomy, 2018.
https://doi.org/10.1155/2018/4371623
Shameem M, R., Sonali J, M. I., Kumar, P. S., Rangasamy, G., Gayathri, K. V., & Parthasarathy, V. (2023). Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environmental Research. 220(July 2022):115200. https://doi.org/10.1016/j.envres.2022.115200
Shin, W., Islam, R., Benson, A., Joe, M. M., Kim, K., Gopal, S., Samaddar, S., Banerjee, S., & Sa, T. (2016). Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement. Korean Journal of Soil Science and Fertilizer. 49(1):17–29.
https://doi.org/10.7745/kjssf.2016.49.1.017
Shultana, R., Kee Zuan, A. T., Yusop, M. R., & Saud, H. M. (2020). Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS ONE. 15(9 september):1–16.
https://doi.org/10.1371/journal.pone.0238537
Simarmata, T., Setiawati, M. R., Fitriatin, B. N., Herdiyantoro, D., & Khumairah, F. H. (2023). Enhancing the ability of rice to adapt and grow under saline stress using selected halotolerant rhizobacterial nitrogen fixer. Open Agriculture. 8(1). https://doi.org/10.1515/opag-2022-0195
Singh, R. K., Singh, P., Li, H. B., Song, Q. Q., Guo, D. J., Solanki, M. K., Verma, K. K., Malviya, M. K., Song, X. P., Lakshmanan, P., Yang, L. T., & Li, Y. R. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: A comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology. 20(1):1–21.
https://doi.org/10.1186/s12870-020-02400-9
Skorupka, M., & Nosalewicz, A. (2021). Ammonia volatilization from fertilizer urea A new challenge for agriculture and industry in view of growing global demand for food and energy crops. Agriculture (Switzerland), 11(9). https://doi.org/10.3390/agriculture11090822
Soumare, A., Diedhiou, A. G., Thuita, M., & Hafidi, M. (2020). Exploiting Biological Nitrogen Fixation : A Route. Plants. 1–22.
Sriwahyuni, P., & Parmila, P. (2019). Peran Bioteknologi. Agricultural Journal. 2(1):46–57. https://core.ac.uk/download/pdf/322463418.pdf
Suryatmana, P., Setiawati, M. R., Herdiyantoro, D., & Fitriatin, B. N. (2022). AGRIVITA Characterization and Potential of Plant Growth-Promoting Rhizobacteria ( PGPR ). 44(3):559–574.
Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports. 39(1):3–17. https://doi.org/10.1007/s00299-019-02447-5
Xiao, X. yuan, Wang, M. wei, Zhu, H. wen, Guo, Z. hui, Han, X. qing, & Zeng, P. (2017). Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicology and Environmental Safety. 142(January):200–206.
https://doi.org/10.1016/j.ecoenv.2017.03.047
Yasmin, R., Hussain, S., Rasool, M. H., Siddique, M. H., & Muzammil, S. (2021). Isolation, Characterization of Zn Solubilizing Bacterium (Pseudomonas protegens RY2) and its Contribution in Growth of Chickpea (Cicer arietinum L) as Deciphered by Improved Growth Parameters and Zn Content. Dose-Response. 19(3):1–12.
https://doi.org/10.1177/15593258211036791
Zhang, H., Zhang, J., & Yang, J. (2023). Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices. Crop and Environment. 2(4):192–201. https://doi.org/10.1016/j.crope.2023.10.001
Zhang, J. hua, Huang, J., Hussain, S., Zhu, L. feng, Cao, X. chuang, Zhu, C. quan, Jin, Q. yu, & Zhang, H. (2021). Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria. Journal of Integrative Agriculture. 20(10):2781–2796. https://doi.org/10.1016/S2095-3119(20)63454-2