Enriched Ameliorant and Readily Available Nutrients for Enhancing the Rhizobacterial Population, Nutrient Uptake, and Yield of Pepper Grown in Inceptisol Soil Media: A Review
DOI:
https://doi.org/10.55677/ijlsar/V03I7Y2024-04Keywords:
pepper productivity, plant nutrition, soil amendmentAbstract
Soil fertility affects the diversity and quality of soil microbes in decomposing organic matter and recycling nutrients. Inceptisols soil is young soil that is starting to develop with its soil fertility status. Management is needed to maximize sustainable soil quality and high plant productivity. Chili plants are widely cultivated but suboptimal soil conditions can inhibit plant growth. Ameliorant materials can be organic or inorganic materials. Ameliorant provides benefits in reducing damage, maintaining nutrients in the soil, increasing the organic nutrient content in the soil and helping microbial symbiosis. The efficiency of nutrient use depends on the plant's ability to absorb nutrients. The effectiveness of nutrient management strategies by combining inorganic and organic nutrient inputs, it is proven that balanced nutrient management can increase plant growth and productivity. Ameliorant can come from organic and inorganic materials which can increase soil fertility from biological and chemical properties, the productivity of chili plants. The materials used as ameliorant are biochar, biosolids, animal waste, microalgae. When cultivating chilies in inceptisol media, it is necessary to apply ameliorant combined with effective essential nutrients, in order to increase chili productivity and contribute to agricultural agriculture.
References
Agbede, T. M., & Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7(April 2021), 100051. https://doi.org/10.1016/j.resenv.2022.100051
Ahn, C. H., Lee, S., Park, J. R., Ahn, H. K., Yoon, S., Nam, K., & Joo, J. C. (2022). Physicochemical and fertility characteristics of microalgal soil ameliorants using harvested cyanobacterial microalgal sludge from a freshwater ecosystem, Republic of Korea. Heliyon, 8(6), e09700. https://doi.org/10.1016/j.heliyon.2022.e09700
Alneyadi, K. S. S., Almheiri, M. S. B., Tzortzakis, N., Di Gioia, F., & Ahmed, Z. F. R. (2024). Organic-based nutrient solutions for sustainable vegetable production in a zero-runoff soilless growing system. Journal of Agriculture and Food Research, 15(February), 101035. https://doi.org/10.1016/j.jafr.2024.101035
Begam, A., Pramanick, M., Dutta, S., Paramanik, B., Dutta, G., Patra, P. S., Kundu, A., & Biswas, A. (2024). Inter-cropping patterns and nutrient management effects on maize growth, yield and quality. Field Crops Research, 310(March), 109363. https://doi.org/10.1016/j.fcr.2024.109363
Chen, Y., Jiang, Z., Ou, J., Liu, F., Cai, G., Tan, K., & Wang, X. (2024). Nitrogen substitution practice improves soil quality of red soil (Ultisols) in South China by affecting soil properties and microbial community composition. Soil and Tillage Research, 240(April 2023), 106089. https://doi.org/10.1016/j.still.2024.106089
Ezeokoli, O. T., Badenhorst, J., Raimi, A., Dabrowski, J., Scholtz, C. H., & Adeleke, R. A. (2023). Effect of dung and dung beetle application on topsoil fungal assemblage of a post-coal mining reclamation land: Towards soil health improvement. Applied Soil Ecology, 185(December 2022), 104804. https://doi.org/10.1016/j.apsoil.2023.104804
Fatima, I., Fatima, A., Shah, M. A., Farooq, M. A., Ahmad, I. A., Ejaz, I., Adjibolosoo, D., Laila, U., Rasheed, M. A., Shahid, A. I., Tariq, A., & Hani, U. (2023). Individual and synergistic effects of different fertilizers and gibberellin on growth and morphology of chili seedlings. Acta Ecologica Sinica, 44(2), 275–281. https://doi.org/10.1016/j.chnaes.2023.06.003
Gogoi, B., Das, R., Nath, D. J., Dutta, S., Borah, M., Talukdar, L., Patgiri, D. K., Pathak, K., Valente, D., Petrosillo, I., & Borah, N. (2024). Long-term management of rice agroecosystem towards climate change mitigation. Ecological Indicators, 160(February), 111876. https://doi.org/10.1016/j.ecolind.2024.111876
Hafez, M., Abdallah, A. M., Mohamed, A. E., & Rashad, M. (2022). Influence of environmental-friendly bio-organic ameliorants on abiotic stress to sustainable agriculture in arid regions: A long term greenhouse study in northwestern Egypt. Journal of King Saud University - Science, 34(6), 102212. https://doi.org/10.1016/j.jksus.2022.102212
Jose, S., Malla, M. A., Renuka, N., Bux, F., & Kumari, S. (2024). Cyanobacteria-green microalgae consortia enhance soil fertility and plant growth by shaping the native soil microbiome of Capsicum annuum. Rhizosphere, 30(March), 100892. https://doi.org/10.1016/j.rhisph.2024.100892
Kashyap, D., de Vries, M., Pronk, A., & Adiyoga, W. (2023). Environmental impact assessment of vegetable production in West Java, Indonesia. Science of the Total Environment, 864(November 2022), 160999. https://doi.org/10.1016/j.scitotenv.2022.160999
Kebede, G., Worku, W., Jifar, H., & Feyissa, F. (2024). Effects of fertilizer levels and varieties on fodder yield productivity, nutrient use efficiency, and profitability of oat (Avena sativa L.) in the central highlands of Ethiopia. Journal of Agriculture and Food Research, 16(December 2023), 101161. https://doi.org/10.1016/j.jafr.2024.101161
Khoso, M. A., Wagan, S., Alam, I., Hussain, A., Ali, Q., Saha, S., Poudel, T. R., Manghwar, H., & Liu, F. (2024). Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, 11(December 2023), 100341. https://doi.org/10.1016/j.stress.2023.100341
Levett, A., Gagen, E. J., Levett, I., & Erskine, P. D. (2023). Integrating microalgae production into mine closure plans. Journal of Environmental Management, 337(December 2022), 117736. https://doi.org/10.1016/j.jenvman.2023.117736
Li, H., Yang, L., Mao, Q., Zhou, H., Guo, P., Agathokleous, E., & Wang, S. (2023). Modified biochar enhances soil fertility and nutrient uptake and yield of rice in mercury-contaminated soil. Environmental Technology and Innovation, 32(November), 103435. https://doi.org/10.1016/j.eti.2023.103435
Li, Z., Fang, F., Wu, L., Gao, F., Li, M., Li, B., Wu, K., Hu, X., Wang, S., Wei, Z., Chen, Q., Zhang, M., & Liu, Z. (2024). The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.01.031
Liu, C., Chen, T., Zhang, F., Han, H., Yi, B., & Chi, D. (2024). Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation. Agricultural Water Management, 300(January), 108908. https://doi.org/10.1016/j.agwat.2024.108908
Lubis, N., & Sebayang, N. U. W. (2024). Effect doses level of vermigot fertilizer on the chemical and biological characteristics of Inceptisol and Maize (Zea mays L.) production. BIO Web of Conferences, 99, 1–8. https://doi.org/10.1051/bioconf/20249905012
Majeed M. Ali Jaaf, S., Li, Y., Günal, E., Ali El Enshasy, H., Salmen, S. H., & Sürücü, A. (2022). The impact of corncob biochar and poultry litter on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi Journal of Biological Sciences, 29(4), 2998–3005. https://doi.org/10.1016/j.sjbs.2022.01.037
Nejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16(February), 101060. https://doi.org/10.1016/j.jafr.2024.101060
Niemmanee, T., Kaveeta, R., & Potchanasin, C. (2015). Assessing the Economic, Social, and Environmental Condition for the Sustainable Agricultural System Planning in Ban Phaeo District, Samut Sakhonn Province, Thailand. Procedia - Social and Behavioral Sciences, 197(February), 2554–2560. https://doi.org/10.1016/j.sbspro.2015.07.621
Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B., & Cambardella, C. A. (2020). Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma, 369(December 2019), 114335. https://doi.org/10.1016/j.geoderma.2020.114335
Ou, X., Liu, D., Liu, A., Liu, H., Chen, R., & Zhang, Y. (2023). Effects of nutrient solution management modes on fruit production and quality of tomatoes grown in extremely root restriction. Scientia Horticulturae, 321(August). https://doi.org/10.1016/j.scienta.2023.112366
Pathak, D., Lone, R., Nazim, N., Alaklabi, A., Khan, S., & Koul, K. K. (2022). Plant growth promoting rhizobacterial diversity in potato grown soil in the Gwalior region of India. Biotechnology Reports, 33(February), e00713. https://doi.org/10.1016/j.btre.2022.e00713
Phares, C. A., Amoakwah, E., Danquah, A., Afrifa, A., Beyaw, L. R., & Frimpong, K. A. (2022). Biochar and NPK fertilizer co-applied with plant growth promoting bacteria (PGPB) enhanced maize grain yield and nutrient use efficiency of inorganic fertilizer. Journal of Agriculture and Food Research, 10(May), 100434. https://doi.org/10.1016/j.jafr.2022.100434
Ran, T., Li, J., Liao, H., Zhao, Y., Yang, G., & Long, J. (2023). Effects of biochar amendment on bacterial communities and their function predictions in a microplastic-contaminated Capsicum annuum L. soil. Environmental Technology and Innovation, 31, 103174. https://doi.org/10.1016/j.eti.2023.103174
Ruseva, A., Minnikova, T., Kolesnikov, S., Trufanov, D., Minin, N., Revina, S., & Gayvoronsky, V. (2024). Assessment of the ecological state of haplic chernozem contaminated by oil, fuel oil and gasoline after remediation. Petroleum Research, 9(1), 155–164. https://doi.org/10.1016/j.ptlrs.2023.03.002
Saha, S., & Bharadwaj, A. (2023). A step towards smart agriculture using metallic nanostructures. Plant Stress, 10(September), 100216. https://doi.org/10.1016/j.stress.2023.100216
Sharma, P., Abrol, V., Sharma, V., Chaddha, S., Srinivasa Rao, C., Ganie, A. Q., Ingo Hefft, D., El-Sheikh, M. A., & Mansoor, S. (2021). Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield and monetary returns in inceptisol subtropics. Saudi Journal of Biological Sciences, 28(12), 7539–7549. https://doi.org/10.1016/j.sjbs.2021.09.043
Silva-Leal, J. A., Pérez-Vidal, A., & Torres-Lozada, P. (2021). Effect of biosolids on the nitrogen and phosphorus contents of soil used for sugarcane cultivation. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06360
Subedi, P., Bhattarai, P., Lamichhane, B., Khanal, A., & Shrestha, J. (2023). Effect of different levels of nitrogen and charcoal on growth and yield traits of chili (Capsicum annuum L.). Heliyon, 9(2), 0–7. https://doi.org/10.1016/j.heliyon.2023.e13353
Widuri, L. I., Lakitan, B., Sakagami, J., Yabuta, S., Kartika, K., & Siaga, E. (2020). Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Annals of Agricultural Sciences, 65(2), 149–158. https://doi.org/10.1016/j.aoas.2020.09.002
Yang, X., Zhang, P., Wei, Z., Liu, J., Hu, X., & Liu, F. (2022). Effects of elevated CO2 and nitrogen supply on leaf gas exchange, plant water relations and nutrient uptake of tomato plants exposed to progressive soil drying. Scientia Horticulturae, 292(February 2021), 110643. https://doi.org/10.1016/j.scienta.2021.110643
Zarpelon, T. G., Guimarães, L. M. da S., Alfenas-Zerbini, P., Lopes, E. S., Mafia, R. G., & Alfenas, A. C. (2016). Rhizobacterial characterization for quality control of eucalyptus biogrowth promoter products. Brazilian Journal of Microbiology, 47(4), 973–979. https://doi.org/10.1016/j.bjm.2016.07.013
Zhang, T., Jian, Q., Yao, X., Guan, L., Li, L., Liu, F., Zhang, C., Li, D., Tang, H., & Lu, L. (2024). Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon, 10(10), e31553. https://doi.org/10.1016/j.heliyon.2024.e31553
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Life Science and Agriculture Research
This work is licensed under a Creative Commons Attribution 4.0 International License.